熱線電話:13121318867

登錄
首頁精彩閱讀數據挖掘領域的主要研究內容
數據挖掘領域的主要研究內容
2016-09-25
收藏

數據挖掘領域的主要研究內容

數據挖掘(data mining)是從大量的、不完全的、有噪聲的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。   

數據挖掘相近的同義詞有數據融合、數據分析和決策支持等。這個定義包括好幾層含義:數據源必須是真實的、大量的、含噪聲的;發現的是用戶感興趣的知識;發現的知識要可接受、可理解、可運用;并不要求發現放之四海皆準的知識,僅支持特定的發現問題。隨著信息技術的高速發展,人們積累的數據量急劇增長,動輒以TB計,如何從海量的數據中提取有用的知識成為當務之急。數據挖掘就是為順應種需要應運而生發展起來的數據處理技術。是知識發現(Knowledge Discovery in Database)的關鍵步驟。

數據挖掘與傳統的數據分析(如查詢、報表、聯機應用分析)的本質區別是數據挖掘是在沒有明確假設的前提下去挖掘信息、發現知識.數據挖掘所得到的信息應具有先前未知,有效和可實用三個特征。

數據挖掘的任務主要是關聯分析、聚類分析、分類、預測、時序模式和偏差分析等。   

(1)關聯分析(association analysis):關聯規則挖掘是由rakesh apwal等人首先提出的。兩個或兩個以上變量的取值之間存在某種規律性,就稱為關聯。數據關聯是數據庫中存在的一類重要的、可被發現的知識。關聯分為簡單關聯、時序關聯和因果關聯。關聯分析的目的是找出數據庫中隱藏的關聯網。一般用支持度和可信度兩個閥值來度量關聯規則的相關性,還不斷引入興趣度、相關性等參數,使得所挖掘的規則更符合需求。


(2)聚類分析(clustering):聚類是把數據按照相似性歸納成若干類別,同一類中的數據彼此相似,不同類中的數據相異。聚類分析可以建立宏觀的概念,發現數據的分布模式,以及可能的數據屬性之間的相互關系。


(3)分類(classification):分類就是找出一個類別的概念描述,它代表了這類數據的整體信息,即該類的內涵描述,并用這種描述來構造模型,一般用規則或決策樹模式表示。分類是利用訓練數據集通過一定的算法而求得分類規則。分類可被用于規則描述和預測。


(4)預測(predication):預測是利用歷史數據找出變化規律,建立模型,并由此模型對未來數據的種類及特征進行預測。預測關心的是精度和不確定性,通常用預測方差來度量。


(5)時序模式(time-series pattern):時序模式是指通過時間序列搜索出的重復發生概率較高的模式。與回歸一樣,它也是用己知的數據預測未來的值,但這些數據的區別是變量所處時間的不同。


(6)偏差分析(deviation):在偏差中包括很多有用的知識,數據庫中的數據存在很多異常情況,發現數據庫中數據存在的異常情況是非常重要的。偏差檢驗的基本方法就是尋找觀察結果與參照之間的差別。

數據挖掘流程:定義問題——>數據準備——>數據挖掘——>結果分析——>知識運用

根據信息存儲格式,用于挖掘的對象有關系數據庫、面向對象數據庫、數據倉庫、文本數據源、多媒體數據庫、空間數據庫、時態數據庫、異質數據庫以及internet等。


數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢