
Python yield 使用方法淺析
本篇文章主要介紹了Python yield 使用方法淺析,小編覺得挺不錯的,現在分享給大家,也給大家做個參考。
如何生成斐波那契數列
斐波那契(Fibonacci)數列是一個非常簡單的遞歸數列,除第一個和第二個數外,任意一個數都可由前兩個數相加得到。用計算機程序輸出斐波那契數列的前 N 個數是一個非常簡單的問題,許多初學者都可以輕易寫出如下函數:
清單 1. 簡單輸出斐波那契數列前 N 個數
def fab(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
執行 fab(5),我們可以得到如下輸出:
>>> fab(5)
1
1
2
3
5
結果沒有問題,但有經驗的開發者會指出,直接在 fab 函數中用 print 打印數字會導致該函數可復用性較差,因為 fab 函數返回 None,其他函數無法獲得該函數生成的數列。
要提高 fab 函數的可復用性,最好不要直接打印出數列,而是返回一個 List。以下是 fab 函數改寫后的第二個版本:
清單 2. 輸出斐波那契數列前 N 個數第二版
def fab(max):
n, a, b = 0, 0, 1
L = []
while n < max:
L.append(b)
a, b = b, a + b
n = n + 1
return L
可以使用如下方式打印出 fab 函數返回的 List:
>>> for n in fab(5):
... print n
...
1
1
2
3
5
改寫后的 fab 函數通過返回 List 能滿足復用性的要求,但是更有經驗的開發者會指出,該函數在運行中占用的內存會隨著參數 max 的增大而增大,如果要控制內存占用,最好不要用 List來保存中間結果,而是通過 iterable 對象來迭代。例如,在 Python2.x 中,代碼:
清單 3. 通過 iterable 對象來迭代
for i in range(1000): pass會導致生成一個 1000 個元素的 List,而代碼:
for i in xrange(1000): pass則不會生成一個 1000 個元素的 List,而是在每次迭代中返回下一個數值,內存空間占用很小。因為 xrange 不返回 List,而是返回一個 iterable 對象。
利用 iterable 我們可以把 fab 函數改寫為一個支持 iterable 的 class,以下是第三個版本的 Fab:
清單 4. 第三個版本
class Fab(object):
def __init__(self, max):
self.max = max
self.n, self.a, self.b = 0, 0, 1
def __iter__(self):
return self
def next(self):
if self.n < self.max:
r = self.b
self.a, self.b = self.b, self.a + self.b
self.n = self.n + 1
return r
raise StopIteration()
Fab 類通過 next() 不斷返回數列的下一個數,內存占用始終為常數:
>>> for n in Fab(5):
... print n
...
1
1
2
3
5
然而,使用 class 改寫的這個版本,代碼遠遠沒有第一版的 fab 函數來得簡潔。如果我們想要保持第一版 fab 函數的簡潔性,同時又要獲得 iterable 的效果,yield 就派上用場了:
清單 5. 使用 yield 的第四版
def fab(max):
n, a, b = 0, 0, 1
while n < max:
yield b
# print b
a, b = b, a + b
n = n + 1
'''
第四個版本的 fab 和第一版相比,僅僅把 print b 改為了 yield b,就在保持簡潔性的同時獲得了 iterable 的效果。
調用第四版的 fab 和第二版的 fab 完全一致:
>>> for n in fab(5):
... print n
...
1
1
2
3
5
簡單地講,yield 的作用就是把一個函數變成一個 generator,帶有 yield 的函數不再是一個普通函數,Python 解釋器會將其視為一個 generator,調用 fab(5) 不會執行 fab 函數,而是返回一個 iterable 對象!在 for 循環執行時,每次循環都會執行 fab 函數內部的代碼,執行到 yield b 時,fab 函數就返回一個迭代值,下次迭代時,代碼從 yield b 的下一條語句繼續執行,而函數的本地變量看起來和上次中斷執行前是完全一樣的,于是函數繼續執行,直到再次遇到 yield。
也可以手動調用 fab(5) 的 next() 方法(因為 fab(5) 是一個 generator 對象,該對象具有 next() 方法),這樣我們就可以更清楚地看到 fab 的執行流程:
清單 6. 執行流程
>>> f = fab(5)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
當函數執行結束時,generator 自動拋出 StopIteration 異常,表示迭代完成。在 for 循環里,無需處理 StopIteration 異常,循環會正常結束。
我們可以得出以下結論:
一個帶有 yield 的函數就是一個 generator,它和普通函數不同,生成一個 generator 看起來像函數調用,但不會執行任何函數代碼,直到對其調用 next()(在 for 循環中會自動調用 next())才開始執行。雖然執行流程仍按函數的流程執行,但每執行到一個 yield 語句就會中斷,并返回一個迭代值,下次執行時從 yield 的下一個語句繼續執行??雌饋砭秃孟褚粋€函數在正常執行的過程中被 yield 中斷了數次,每次中斷都會通過 yield 返回當前的迭代值。
yield 的好處是顯而易見的,把一個函數改寫為一個 generator 就獲得了迭代能力,比起用類的實例保存狀態來計算下一個 next() 的值,不僅代碼簡潔,而且執行流程異常清晰。
如何判斷一個函數是否是一個特殊的 generator 函數?可以利用 isgeneratorfunction 判斷:
清單 7. 使用 isgeneratorfunction 判斷
>>> from inspect import isgeneratorfunction
>>> isgeneratorfunction(fab)
True
要注意區分 fab 和 fab(5),fab 是一個 generator function,而 fab(5) 是調用 fab 返回的一個 generator,好比類的定義和類的實例的區別:
清單 8. 類的定義和類的實例
>>> import types
>>> isinstance(fab, types.GeneratorType)
False
>>> isinstance(fab(5), types.GeneratorType)
True
fab 是無法迭代的,而 fab(5) 是可迭代的:
>>> from collections import Iterable
>>> isinstance(fab, Iterable)
False
>>> isinstance(fab(5), Iterable)
True
每次調用 fab 函數都會生成一個新的 generator 實例,各實例互不影響:
>>> f1 = fab(3)
>>> f2 = fab(5)
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 2
>>> print 'f2:', f2.next()
f2: 2
>>> print 'f2:', f2.next()
f2: 3
>>> print 'f2:', f2.next()
f2: 5
return 的作用
在一個 generator function 中,如果沒有 return,則默認執行至函數完畢,如果在執行過程中 return,則直接拋出 StopIteration 終止迭代。
另一個例子
另一個 yield 的例子來源于文件讀取。如果直接對文件對象調用 read() 方法,會導致不可預測的內存占用。好的方法是利用固定長度的緩沖區來不斷讀取文件內容。通過 yield,我們不再需要編寫讀文件的迭代類,就可以輕松實現文件讀?。?br />
清單 9. 另一個 yield 的例子
def read_file(fpath):
BLOCK_SIZE = 1024
with open(fpath, 'rb') as f:
while True:
block = f.read(BLOCK_SIZE)
if block:
yield block
else:
return
以上就是本文的全部內容,希望對大家的學習有所幫助
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
2025 年,數據如同數字時代的 DNA,編碼著人類社會的未來圖景,驅動著商業時代的運轉。從全球互聯網用戶每天產生的2.5億TB數據, ...
2025-05-27CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25