
數據挖掘成果固化_聚類分析_數據分析師
--聚類樣本數據模擬
--BY:@ETwise
--輸入表1:cluster_sample
--輸入表2:cluster_center
--20141213
create table cluster_sample
(
serv_id NUMBER ,
label_1 number,
label_2 number,
label_3 number,
label_4 number
);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (1,2,3,4,5);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (2,2.5,4.2,4.2,5.2);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (3,3.2,4.1,2.3,5.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (4,1.1,1.2,2.2,3.2);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (5,1.7,1.75,1.35,4.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (6,1.5,1.2,0.62,3.38);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (7,1.3,0.65,-0.11,3);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (8,1.1,0.1,-0.84,2.62);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (9,0.9,-0.45,-1.57,2.24);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (11,0.5,-1.55,-3.03,1.48);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (12,0.3,-2.1,-3.76,1.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (13,0.1,-2.65,-4.49,0.72);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (14,-0.1,-3.2,-5.22,0.34);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (15,-0.3,-3.75,-5.95,-0.04);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (16,-0.5,-4.3,-6.68,-0.42);
--創建聚類分析所得到的中心點數據
create table cluster_center
(
row_1 number,
row_2 number,
row_3 number,
row_4 number,
type_id VARCHAR2(20) not null
);
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (0,0,0,0,'t1');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (1,1,1,1,'t2');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (2,2,2,2,'t3');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (3,3,3,3,'t4');
--聚類分析成果系統固化相關說明(K-means)
--第一步:對計算每個點與各個中心點的距離,并對應得到相應的分類type_id
select serv_id,
sqrt(power((label_1 - row_1), 2) + power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) + power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b
;
--第二步:使用開窗函數對各serv_id的各個中心點的距離進行升序排序,并打上相應的編號
select serv_id,
os,
row_number() over(partition by serv_id order by os asc) myrow_1,
type_id
from (select serv_id,
sqrt(power((label_1 - row_1), 2) +
power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) +
power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b)
;
--第三步:提取各個serv_id的最小距離數據,即可得到各個serv_id的類別
select *
from (select serv_id,
os,
row_number() over(partition by serv_id order by os asc) myrow_1,
type_id
from (select serv_id,
sqrt(power((label_1 - row_1), 2) +
power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) +
power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b))
where myrow_1 = 1
;
--其他辦法:一步到位,直接代入中心點進行計算
select serv_id,
case
when least(os1, os2, os3, os4) = os1 then
't1'
when least(os1, os2, os3, os4) = os2 then
't2'
when least(os1, os2, os3, os4) = os3 then
't3'
when least(os1, os2, os3, os4) = os4 then
't4'
else
'-1'
end type_id
from (select serv_id,
sqrt(power((label_1 - 0), 2) + power((label_2 - 0), 2) +
power((label_3 - 0), 2) + power((label_4 - 0), 2)) os1,
sqrt(power((label_1 - 1), 2) + power((label_2 - 1), 2) +
power((label_3 - 1), 2) + power((label_4 - 1), 2)) os2,
sqrt(power((label_1 - 2), 2) + power((label_2 - 2), 2) +
power((label_3 - 2), 2) + power((label_4 - 2), 2)) os3,
sqrt(power((label_1 - 3), 2) + power((label_2 - 3), 2) +
power((label_3 - 3), 2) + power((label_4 - 3), 2)) os4
from cluster_sample t)
;
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
2025 年,數據如同數字時代的 DNA,編碼著人類社會的未來圖景,驅動著商業時代的運轉。從全球互聯網用戶每天產生的2.5億TB數據, ...
2025-05-27CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25