
作者:挪亞·吉夫特(Noah Gift)
來源:大數據DT(ID:hzdashuju)
內容摘編自《人工智能開發實踐:云端機器學習導論》
導讀:本文介紹Python中的常見控制結構。
傳統Python語言的主要控制結構是for循環。然而,需要注意的是for循環在Pandas中不常用,因此Python中for循環的有效執行并不適用于Pandas模式。一些常見控制結構如下。
for循環
while循環
if/else語句
try/except語句
生成器表達式
列表推導式
模式匹配
所有的程序最終都需要一種控制執行流的方式。本節介紹一些控制執行流的技術。
01 for循環
for循環是Python的一種最基本的控制結構。使用for循環的一種常見模式是使用range函數生成數值范圍,然后對其進行迭代。
res = range(3)
print(list(res))
#輸出:[0. 1. 2]
for i in range(3):
print(i)
'''輸出:
0
1
2
'''
for循環列表
使用for循環的另一種常見模式是對列表進行迭代。
martial_arts = ["Sambo","Muay Thai","BJJ"]
for martial_art in martial_arts:
print(f"{ martial_art} has influenced\
modern mixed martial arts")
'''輸出:
Sambo has influenced modern mixed martial arts
Muay Thai has influenced modern mixed martial arts
BJJ has influenced modern mixed martial arts
'''
02 while循環
while循環是一種條件有效就會重復執行的循環方式。while循環的常見用途是創建無限循環。在本示例中,while循環用于過濾函數,該函數返回兩種攻擊類型中的一種。
def attacks():
list_of_attacks = ["lower_body", "lower_body",
"upper_body"]
print("There are a total of {lenlist_of_attacks)}\
attacks coming!")
for attack in list_of_ attacks:
yield attack
attack = attacks()
count = 0
while next(attack) == "lower_body":
count +=1
print(f"crossing legs to prevent attack #{count}")
else:
count += 1
print(f"This is not lower body attack, \
I will cross my arms for# count}")
'''輸出:
There are a total of 3 attacks coming!
crossing legs to prevent attack #1
crossing legs to prevent attack #2
This is not a lower body attack, I will cross my arms for #3
'''
03 if/else語句
if/else語句是一條在判斷之間進行分支的常見語句。在本示例中,if/elif用于匹配分支。如果沒有匹配項,則執行最后一條else語句。
def recommended_attack(position):
"""Recommends an attack based on the position"""
if position == "full_guard":
print(f"Try an armbar attack")
elif position == "half_guard":
print(f"Try a kimura attack")
elif position == "fu1l_mount":
print(f"Try an arm triangle")
else:
print(f"You're on your own, \
there is no suggestion for an attack")
recommended_attack("full_guard")#輸出:Try an armbar attack
recommended_attack("z_guard")
#輸出:You're on your own, there is no suggestion for an attack
04 生成器表達式
生成器表達式建立在yield語句的概念上,它允許對序列進行惰性求值。生成器表達式的益處是,在實際求值計算前不會對任何內容進行求值或將其放入內存。這就是下面的示例可以在生成的無限隨機攻擊序列中執行的原因。
在生成器管道中,諸如 “arm_triangle”的小寫攻擊被轉換為“ARM_TRIANGLE”,接下來刪除其中的下劃線,得到“ARM TRIANGLE”。
def lazy_return_random_attacks():
"""Yield attacks each time"""
import random
attacks = {"kimura": "upper_body",
"straight_ankle_lock": "lower_body",
"arm_triangle": "upper_body",
"keylock": "upper_body",
"knee_bar": "lower_body"}
while True:
random_attack random.choices(list(attacks.keys()))
yield random attack
#Make all attacks appear as Upper Case
upper_case_attacks = \
(attack.pop().upper() for attack in \
lazy_return_random_attacks())
next(upper-case_attacks)
#輸出:ARM-TRIANGLE
## Generator Pipeline: One expression chains into the next
#Make all attacks appear as Upper Case
upper-case_attacks =\
(attack. pop().upper() for attack in\
lazy_return_random_attacks())
#remove the underscore
remove underscore =\
(attack.split("_")for attack in\
upper-case_attacks)
#create a new phrase
new_attack_phrase =\
(" ".join(phrase) for phrase in\
remove_underscore)
next(new_attack_phrase)
#輸出:'STRAIGHT ANKLE LOCK'
for number in range(10):
print(next(new_attack_phrase))
'''輸出:
KIMURA
KEYLOCK
STRAIGHT ANKLE LOCK
'''
05 列表推導式
語法上列表推導式與生成器表達式類似,然而直接對比它們,會發現列表推導式是在內存中求值。此外,列表推導式是優化的C代碼,可以認為這是對傳統for循環的重大改進。
martial_arts = ["Sambo", "Muay Thai", "BJJ"]
new_phrases [f"mixed Martial Arts is influenced by \
(martial_art)" for martial_art in martial_arts]
print(new_phrases)
['Mixed Martial Arts is influenced by Sambo', \
'Mixed Martial Arts is influenced by Muay Thai', \
'Mixed Martial Arts is influenced by BJJ']
06 中級主題
有了這些基礎知識后,重要的是不僅要了解如何創建代碼,還要了解如何創建可維護的代碼。創建可維護代碼的一種方法是創建一個庫,另一種方法是使用已經安裝的第三方庫編寫的代碼。其總體思想是最小化和分解復雜性。
使用Python編寫庫
使用Python編寫庫非常重要,之后將該庫導入項目無須很長時間。下面這些示例是編寫庫的基礎知識:在存儲庫中有一個名為funclib的文件夾,其中有一個_init_ .py文件。要創建庫,在該目錄中需要有一個包含函數的模塊。
首先創建一個文件。
touch funclib/funcmod.py
然后在該文件中創建一個函數。
"""This is a simple module"""
def list_of_belts_in_bjj():
"""Returns a list of the belts in Brazilian jiu-jitsu"""
belts= ["white", "blue", "purple", "brown", "black"]
return belts
import sys;sys.path.append("..")
from funclib import funcmod
funcmod.list_of_belts_in-bjj()
#輸出:['white', 'blue', 'purple', 'brown', 'black']
導入庫
如果庫是上面的目錄,則可以用Jupyter添加sys.path.append方法來將庫導入。接下來,使用前面創建的文件夾/文件名/函數名的命名空間導入模塊。
安裝第三方庫
可使用pip install命令安裝第三方庫。請注意,conda命令(https://conda.io/docs/user-guide/tasks/manage-pkgs.html)是pip命令的可選替代命令。如果使用conda命令,那么pip命令也會工作得很好,因為pip是virtualenv虛擬環境的替代品,但它也能直接安裝軟件包。
安裝pandas包。
pip install pandas
另外,還可使用requirements.txt文件安裝包。
> ca requirements.txt
pylint
pytest
pytest-cov
click
jupyter
nbval
> pip install -r requirements.txt
下面是在Jupyter Notebook中使用小型庫的示例。值得指出的是,在Jupyter Notebook中創建程序代碼組成的巨型蜘蛛網很容易,而且非常簡單的解決方法就是創建一些庫,然后測試并導入這些庫。
"""This is a simple module"""
import pandas as pd
def list_of_belts_in_bjj():
"""Returns a list of the belts in Brazilian jiu-jitsu"""
belts = ["white", "blue", "purple", "brown", "black"]
return belts
def count_belts():
"""Uses Pandas to count number of belts"""
belts = list_of_belts_in_bjj()
df = pd.Dataframe(belts)
res = df.count()
count = res.values.tolist()[0]
return count
from funclib.funcmod import count_belts
print(count_belts())
#輸出:5
類
可在Jupyter Notebook中重復使用類并與類進行交互。最簡單的類類型就是一個名稱,類的定義形式如下。
class Competitor: pass
該類可實例化為多個對象。
class Competitor: pass
conor = Competitor()
conor.name = "Conor McGregor"
conor.age = 29
conor.weight = 155
nate = Competitor()
nate.name = "Nate Diaz"
nate.age = 30
nate.weight = 170
def print_competitor _age(object):
"""Print out age statistics about a competitor"""
print(f"{object.name} is {object.age} years old")
print_competitor_age(nate)
#輸出:Nate Diaz is 30 years old
print_competitor_age(conor)
#輸出:Conor McGregor is 29 years old
類和函數的區別
類和函數的主要區別包括:
函數更容易解釋。
函數(典型情況下)只在函數內部具有狀態,而類在函數外部保持不變的狀態。
類能以復雜性為代價提供更高級別的抽象。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25