
“數據決定了機器學習的上限,而算法只是盡可能逼近這個上限”,這里的數據指的就是經過特征工程得到的數據。特征工程指的是把原始數據轉變為模型的訓練數據的過程,它的目的就是獲取更好的訓練數據特征,使得機器學習模型逼近這個上限。
一、特征工程概念的理解
簡單說,特征工程是能夠將數據像藝術一樣展現的技術。
本質上說,呈現給算法的數據應該能擁有基本數據的相關結構或屬性 。當做特征工程時,其實是將數據屬性轉換為數據特征的過程,屬性代表了數據的所有維度,在數據建模時,如果對原始數據的所有屬性進行學習,并不能很好的找到數據的潛在趨勢,而通過特征工程對你的數據進行預處理的話,你的算法模型能夠減少受到噪聲的干擾,這樣能夠更好的找出趨勢;
事實上,好的特征甚至能夠幫你實現使用簡單的模型達到很好的效果;
但是,對于特征工程中引用的新特征,需要驗證它的確提高了預測的準確度,而不是加入了一個無用的特征,不然只會增加算法運算的復雜度。
二、特征工程常用方法
1、時間戳處理
時間戳通常需要分離成多個維度比如年、月、日、小時、分鐘、秒鐘。但在很多的應用中,大量的信息是不需要的,因此我們在呈現時間的時候,試著保證你所提供的所有數據是你的模型所需要的,并且別忘了時區,加入你的數據源來自不同的地理數據源,別忘了利用時區將數據標準化。
2、離散型變量處理
舉一個簡單的例子,由{紅,黃,藍}組成的離散型變量,最常用的方式是吧每個變量值轉換成二元屬性,即從{0.1}取一個值,也就是常說的獨熱編碼(one-hot code)。
3、分箱/分區
有時候,將連續型變量轉換成類別呈現更有意義,同時能夠使算法減少噪聲的干擾,通過將一定范圍內的數值劃分成確定的塊。
只有了解變量的領域知識的基礎,確定屬性能夠劃分成簡潔的范圍時分區才有意義,即所有的數值落入一個分區時能夠呈現出共同的特征。在實際的運用中,當你不想讓你的模型總是嘗試區分值之間是否太近時,分區能夠避免出現過擬合。例如,如果你感興趣的是將一個城市作為總體,這時你可以將所有落入該城市的維度整合成一個整體。分箱也能減小小錯誤的影響,通過將一個給定值劃入到最近的塊中。如果劃分范圍的數量和所有可能值相近,或對你來說準確率很重要的話,此時分箱就不合適了。
4、交叉特征
交叉特征算是特征工程中非常重要的方法之一,它將兩個或更多的類別屬性組合成一個。當組合的特征要比單個特征更好時,這是一項非常有用的技術。數學上來說,是對類別特征的所有值進行交叉相乘。
假如擁有一個特征A,A有兩個可能值{A1.A2}。擁有一個特征B,存在{B1.B2}等可能值。然后,A&B之間的交叉特征如下:{(A1.B1),(A1.B2),(A2.B1),(A2.B2)},并且你可以給這些組合特征取任何名字。但是需要明白每個組合特征其實代表著A和B各自信息協同作用。
5、特征選擇
為了得到更好的模型,使用某些算法自動的選出原始特征的子集。這個過程,你不會構建或修改你擁有的特征,但是會通過修建特征來達到減少噪聲和冗余。
特征選擇算法可能會用到評分方法來排名和選擇特征,比如相關性或其他確定特征重要性的方法,更進一步的方法可能需要通過試錯,來搜素出特征子集。
還有通過構建輔助模型的方法,逐步回歸就是模型構造過程中自動執行特征選擇算法的一個實例,還有像Lasso回歸和嶺回歸等正則化方法也被歸入到特征選擇,通過加入額外的約束或者懲罰項加到已有模型(損失函數)上,以防止過擬合并提高泛化能力。
6、特征縮放
有時候,你可能會注意到某些特征比其他特征擁有高得多的跨度值。舉個例子,將一個人的收入和他的年齡進行比較,更具體的例子,如某些模型(像嶺回歸)要求你必須將特征值縮放到相同的范圍值內。通過特征縮放可以避免某些特征獲得大小非常懸殊的權重值。
7、特征提取
特征提取涉及到從原始屬性中自動生成一些新的特征集的一系列算法,降維算法就屬于這一類。特征提取是一個自動將觀測值降維到一個足夠建模的小數據集的過程。
對于列表數據,可使用的方法包括一些投影方法,像主成分分析和無監督聚類算法。
對于圖形數據,可能包括一些直線監測和邊緣檢測,對于不同領域有各自的方法。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25在當今數字化時代,數據分析師的重要性與日俱增。但許多人在踏上這條職業道路時,往往充滿疑惑: 如何成為一名數據分析師?成為 ...
2025-04-24以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《劉靜:10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda ...
2025-04-23