
XGBoost是誕生于2014年2月的一種專攻梯度提升算法的機器學習函數庫,它有很好的學習效果,速度也非???,與梯度提升算法在另一個常用機器學習庫scikit-learn中的實現相比,XGBoost的性能可以提升10倍以上。還有,XGBoost利用了核外計算,能夠使數據科學家僅在一個主機上就能實現數億樣本數據的處理。最終,并且將這些技術進行結合,進而做出一個端到端的系統,能夠以最少的集群系統擴展到更大的數據集上。
一、XGBoost 的優點:
1.新穎、能夠處理稀疏數據;
2.理論上合理的weighted quantile sketch過程使得能夠在近似樹學習中處理實例權重;
3.引入一個新穎的稀疏感知(sparsity-aware)算法用于并行樹學習;
4.并行和分布式計算,學習更為快速,模型探索也能更快的實現;
5.對于核外樹學習,提出了一種有效地緩存感知塊結構;
二、XGBoost算法參數
XGBoost的作者把所有的參數分成了三類:
通用參數:宏觀函數控制。
Booster參數:控制每一步的booster(tree/regression)。
學習目標參數:控制訓練目標的表現。
3.1通用參數
這些參數用來控制XGBoost的宏觀功能。
1、booster[默認gbtree]
選擇每次迭代的模型,有兩種選擇:
gbtree:基于樹的模型
gbliner:線性模型
2、silent[默認0]
當這個參數值為1時,靜默模式開啟,不會輸出任何信息。
一般這個參數就保持默認的0.因為這樣能幫我們更好地理解模型。
3、nthread[默認值為最大可能的線程數]
這個參數用來進行多線程控制,應當輸入系統的核數。
如果你希望使用CPU全部的核,那就不要輸入這個參數,算法會自動檢測它。
還有兩個參數,XGBoost會自動設置,目前你不用管它。接下來咱們一起看booster參數。
3.2 booster參數
盡管有兩種booster可供選擇,我這里只介紹tree booster,因為它的表現遠遠勝過linear booster,所以linear booster很少用到。
1、eta[默認0.3]
和GBM中的 learning rate 參數類似。
通過減少每一步的權重,可以提高模型的魯棒性。
典型值為0.01-0.2.
2、min_child_weight[默認1]
決定最小葉子節點樣本權重和。
和GBM的 min_child_leaf 參數類似,但不完全一樣。XGBoost的這個參數是最小樣本權重的和,而GBM參數是最小樣本總數。
這個參數用于避免過擬合。當它的值較大時,可以避免模型學習到局部的特殊樣本。
但是如果這個值過高,會導致欠擬合。這個參數需要使用CV來調整。
3、max_depth[默認6]
和GBM中的參數相同,這個值為樹的最大深度。
這個值也是用來避免過擬合的。max_depth越大,模型會學到更具體更局部的樣本。
需要使用CV函數來進行調優。
典型值:3-10
4、max_leaf_nodes
樹上最大的節點或葉子的數量。
可以替代max_depth的作用。因為如果生成的是二叉樹,一個深度為n的樹最多生成n2n2個葉子。
如果定義了這個參數,GBM會忽略max_depth參數。
5、gamma[默認0]
在節點分裂時,只有分裂后損失函數的值下降了,才會分裂這個節點。Gamma指定了節點分裂所需的最小損失函數下降值。
這個參數的值越大,算法越保守。這個參數的值和損失函數息息相關,所以是需要調整的。
6、max_delta_step[默認0]
這參數限制每棵樹權重改變的最大步長。如果這個參數的值為0.那就意味著沒有約束。如果它被賦予了某個正值,那么它會讓這個算法更加保守。
通常,這個參數不需要設置。但是當各類別的樣本十分不平衡時,它對邏輯回歸是很有幫助的。
這個參數一般用不到,但是你可以挖掘出來它更多的用處。
7、subsample[默認1]
和GBM中的subsample參數一模一樣。這個參數控制對于每棵樹,隨機采樣的比例。
減小這個參數的值,算法會更加保守,避免過擬合。但是,如果這個值設置得過小,它可能會導致欠擬合。
典型值:0.5-1
8、colsample_bytree[默認1]
和GBM里面的max_features參數類似。用來控制每棵隨機采樣的列數的占比(每一列是一個特征)。
典型值:0.5-1
9、colsample_bylevel[默認1]
用來控制樹的每一級的每一次分裂,對列數的采樣的占比。
我個人一般不太用這個參數,因為subsample參數和colsample_bytree參數可以起到相同的作用。但是如果感興趣,可以挖掘這個參數更多的用處。
10、lambda[默認1]
權重的L2正則化項。(和Ridge regression類似)。
這個參數是用來控制XGBoost的正則化部分的。雖然大部分數據科學家很少用到這個參數,但是這個參數在減少過擬合上還是可以挖掘出更多用處的。
11、alpha[默認1]
權重的L1正則化項。(和Lasso regression類似)。
可以應用在很高維度的情況下,使得算法的速度更快。
12、scale_pos_weight[默認1]
在各類別樣本十分不平衡時,把這個參數設定為一個正值,可以使算法更快收斂。
3.3學習目標參數
這個參數用來控制理想的優化目標和每一步結果的度量方法。
1、objective[默認reg:linear]
這個參數定義需要被最小化的損失函數。最常用的值有:
binary:logistic 二分類的邏輯回歸,返回預測的概率(不是類別)。
multi:softmax 使用softmax的多分類器,返回預測的類別(不是概率)。 在這種情況下,你還需要多設一個參數:num_class(類別數目)。
multi:softprob 和multi:softmax參數一樣,但是返回的是每個數據屬于各個類別的概率。
2、eval_metric[默認值取決于objective參數的取值]
對于有效數據的度量方法。
對于回歸問題,默認值是rmse,對于分類問題,默認值是error。
典型值有:
rmse 均方根誤差(∑Ni=1?2N?????√∑i=1N?2N)
mae 平均絕對誤差(∑Ni=1|?|N∑i=1N|?|N)
logloss 負對數似然函數值
error 二分類錯誤率(閾值為0.5)
merror 多分類錯誤率
mlogloss 多分類logloss損失函數
auc 曲線下面積
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25在當今數字化時代,數據分析師的重要性與日俱增。但許多人在踏上這條職業道路時,往往充滿疑惑: 如何成為一名數據分析師?成為 ...
2025-04-24以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《劉靜:10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda ...
2025-04-23