熱線電話:13121318867

登錄
首頁精彩閱讀數據分析面試題:如何從10億查詢詞找出出現頻率最高的10個?
數據分析面試題:如何從10億查詢詞找出出現頻率最高的10個?
2015-12-28
收藏

數據分析面試題:如何從10億查詢詞找出出現頻率最高的10個?

1. 問題描述

在大規模數據處理中,常遇到的一類問題是,在海量數據中找出出現頻率最高的前K個數,或者從海量數據中找出最大的前K個數,這類問題通常稱為“top K”問題,如:在搜索引擎中,統計搜索最熱門的10個查詢詞;在歌曲庫中統計下載率最高的前10首歌等等。

2. 當前解決方案

針對top k類問題,通常比較好的方案是【分治+trie樹/hash+小頂堆】,即先將數據集按照hash方法分解成多個小數據集,然后使用trie樹或者hash統計每個小數據集中的query詞頻,之后用小頂堆求出每個數據集中出頻率最高的前K個數,最后在所有top K中求出最終的top K。

實際上,最優的解決方案應該是最符合實際設計需求的方案,在實際應用中,可能有足夠大的內存,那么直接將數據扔到內存中一次性處理即可,也可能機器有多個核,這樣可以采用多線程處理整個數據集。

本文針對不同的應用場景,介紹了適合相應應用場景的解決方案。

3. 解決方案

3.1 單機+單核+足夠大內存

設每個查詢詞平均占8Byte,則10億個查詢詞所需的內存大約是10^9*8=8G內存。如果你有這么大的內存,直接在內存中對查詢詞進行排序,順序遍歷找出10個出現頻率最大的10個即可。這種方法簡單快速,更加實用。當然,也可以先用HashMap求出每個詞出現的頻率,然后求出出現頻率最大的10個詞。

3.2 單機+多核+足夠大內存

這時可以直接在內存中實用hash方法將數據劃分成n個partition,每個partition交給一個線程處理,線程的處理邏輯是同3.1節類似,最后一個線程將結果歸并。

該方法存在一個瓶頸會明顯影響效率,即數據傾斜,每個線程的處理速度可能不同,快的線程需要等待慢的線程,最終的處理速度取決于慢的線程。解決方法是,將數據劃分成c*n個partition(c>1),每個線程處理完當前partition后主動取下一個partition繼續處理,直到所有數據處理完畢,最后由一個線程進行歸并。

3.3 單機+單核+受限內存

這種情況下,需要將原數據文件切割成一個一個小文件,如,采用hash(x)%M,將原文件中的數據切割成M小文件,如果小文件仍大于內存大小,繼續采用hash的方法對數據文件進行切割,直到每個小文件小于內存大小,這樣,每個文件可放到內存中處理。采用3.1節的方法依次處理每個小文件。

3.4 多機+受限內存

這種情況下,為了合理利用多臺機器的資源,可將數據分發到多臺機器上,每臺機器采用3.3節中的策略解決本地的數據??刹捎胔ash+socket方法進行數據分發。

從實際應用的角度考慮,3.1~3.4節的方案并不可行,因為在大規模數據處理環境下,作業效率并不是首要考慮的問題,算法的擴展性和容錯性才是首要考慮的。算法應該具有良好的擴展性,以便數據量進一步加大(隨著業務的發展,數據量加大是必然的)時,在不修改算法框架的前提下,可達到近似的線性比;算法應該具有容錯性,即當前某個文件處理失敗后,能自動將其交給另外一個線程繼續處理,而不是從頭開始處理。

Top k問題很適合采用MapReduce框架解決,用戶只需編寫一個map函數和兩個reduce 函數,然后提交到Hadoop(采用mapchain和reducechain)上即可解決該問題。對于map函數,采用hash算法,將hash值相同的數據交給同一個reduce task;對于第一個reduce函數,采用HashMap統計出每個詞出現的頻率,對于第二個reduce 函數,統計所有reduce task輸出數據中的top k即可。

4. 總結

Top K問題是一個非常常見的問題,公司一般不會自己寫個程序進行計算,而是提交到自己核心的數據處理平臺上計算,該平臺的計算效率可能不如直接寫程序高,但它具有良好的擴展性和容錯性,而這才是企業最看重的。

數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢