
K-means算法及文本聚類實踐
K-Means是常用的聚類算法,與其他聚類算法相比,其時間復雜度低,聚類的效果也還不錯,這里簡單介紹一下k-means算法,下圖是一個手寫體數據集聚類的結果。
k-means算法需要事先指定簇的個數k,算法開始隨機選擇k個記錄點作為中心點,然后遍歷整個數據集的各條記錄,將每條記錄歸到離它最近的中心點所在的簇中,之后以各個簇的記錄的均值中心點取代之前的中心點,然后不斷迭代,直到收斂,算法描述如下:
上面說的收斂,可以看出兩方面,一是每條記錄所歸屬的簇不再變化,二是優化目標變化不大。算法的時間復雜度是O(K*N*T),k是中心點個數,N數據集的大小,T是迭代次數。
k-means的損失函數是平方誤差:
其中ωkωk表示第k個簇,u(ωk)u(ωk)表示第k個簇的中心點,RSSkRSSk是第k個簇的損失函數,RSSRSS表示整體的損失函數。優化目標就是選擇恰當的記錄歸屬方案,使得整體的損失函數最小。
k-meams算法的能夠保證收斂,但不能保證收斂于全局最優點,當初始中心點選取不好時,只能達到局部最優點,整個聚類的效果也會比較差??梢圆捎靡韵路椒ǎ簁-means中心點
1、選擇彼此距離盡可能遠的那些點作為中心點;
2、先采用層次進行初步聚類輸出k個簇,以簇的中心點的作為k-means的中心點的輸入。
3、多次隨機選擇中心點訓練k-means,選擇效果最好的聚類結果
k-means的誤差函數有一個很大缺陷,就是隨著簇的個數增加,誤差函數趨近于0,最極端的情況是每個記錄各為一個單獨的簇,此時數據記錄的誤差為0,但是這樣聚類結果并不是我們想要的,可以引入結構風險對模型的復雜度進行懲罰:
λλ是平衡訓練誤差與簇的個數的參數,但是現在的問題又變成了如何選取λλ了,有研究[參考文獻1]指出,在數據集滿足高斯分布時,λ=2mλ=2m,其中m是向量的維度。
另一種方法是按遞增的順序嘗試不同的k值,同時畫出其對應的誤差值,通過尋求拐點來找到一個較好的k值,詳情見下面的文本聚類的例子。
我爬取了36KR的部分文章,共1456篇,分詞后使用sklearn進行k-means聚類。分詞后數據記錄如下:
使用TF-IDF進行特征詞的選取,下圖是中心點的個數從3到80對應的誤差值的曲線:
從上圖中在k=10處出現一個較明顯的拐點,因此選擇k=10作為中心點的個數,下面是10個簇的數據集的個數。
聚類完成后,我們需要一些標簽來描述簇,聚類完后,相當于每個類都用一個類標,這時候可以用TFIDF、互信息、卡方等方法來選取特征詞作為標簽。關于卡方和互信息特征提取可以看我之前的文章文本特征選擇,下面是10個類的tfidf標簽結果。
Cluster 0: 商家 商品 物流 品牌 支付 導購 網站 購物 平臺 訂單
Cluster 1: 投資 融資 美元 公司 資本 市場 獲得 國內 中國 去年
Cluster 2: 手機 智能 硬件 設備 電視 運動 數據 功能 健康 使用
Cluster 3: 數據 平臺 市場 學生 app 移動 信息 公司 醫生 教育
Cluster 4: 企業 招聘 人才 平臺 公司 it 移動 網站 安全 信息
Cluster 5: 社交 好友 交友 寵物 功能 活動 朋友 基于 分享 游戲
Cluster 6: 記賬 理財 貸款 銀行 金融 p2p 投資 互聯網 基金 公司
Cluster 7: 任務 協作 企業 銷售 溝通 工作 項目 管理 工具 成員
Cluster 8: 旅行 旅游 酒店 預訂 信息 城市 投資 開放 app 需求
Cluster 9: 視頻 內容 游戲 音樂 圖片 照片 廣告 閱讀 分享 功能
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25