
十張圖解釋機器學習的基本概念
在解釋機器學習的基本概念的時候,我發現自己總是回到有限的幾幅圖中。以下是我認為最有啟發性的條目列表。
1. Test and training error: 為什么低訓練誤差并不總是一件好的事情呢:ESL 圖2.11.以模型復雜度為變量的測試及訓練錯誤函數。
2. Under and overfitting: 低度擬合或者過度擬合的例子。PRML 圖1.4.多項式曲線有各種各樣的命令M,以紅色曲線表示,由綠色曲線適應數據集后生成。
3. Occam’s razor
ITILA 圖28.3.為什么貝葉斯推理可以具體化奧卡姆剃刀原理。這張圖給了為什么復雜模型原來是小概率事件這個問題一個基本的直觀的解釋。水平軸代表了可能的數據集D空間。貝葉斯定理以他們預測的數據出現的程度成比例地反饋模型。這些預測被數據D上歸一化概率分布量化。數據的概率給出了一種模型Hi,P(D|Hi)被稱作支持Hi模型的證據。一個簡單的模型H1僅可以做到一種有限預測,以P(D|H1)展示;一個更加強大的模型H2,舉例來說,可以比模型H1擁有更加自由的參數,可以預測更多種類的數據集。這也表明,無論如何,H2在C1域中對數據集的預測做不到像H1那樣強大。假設相等的先驗概率被分配給這兩種模型,之后數據集落在C1區域,不那么強大的模型H1將會是更加合適的模型。
4. Feature combinations:
(1)為什么集體相關的特征單獨來看時無關緊要,這也是(2)線性方法可能會失敗的原因。從Isabelle Guyon特征提取的幻燈片來看。
5. Irrelevant features:
為什么無關緊要的特征會損害KNN,聚類,以及其它以相似點聚集的方法。左右的圖展示了兩類數據很好地被分離在縱軸上。右圖添加了一條不切題的橫軸,它破壞了分組,并且使得許多點成為相反類的近鄰。
6. Basis functions
非線性的基礎函數是如何使一個低維度的非線性邊界的分類問題,轉變為一個高維度的線性邊界問題。Andrew Moore的支持向量機SVM(Support Vector Machine)教程幻燈片中有:一個單維度的非線性帶有輸入x的分類問題轉化為一個2維的線性可分的z=(x,x^2)問題。
7. Discriminative vs. Generative:
為什么判別式學習比產生式更加簡單:PRML 圖1.27.這兩類方法的分類條件的密度舉例,有一個單一的輸入變量x(左圖),連同相應的后驗概率(右圖)。注意到左側的分類條件密度p(x|C1)的模式,在左圖中以藍色線條表示,對后驗概率沒有影響。右圖中垂直的綠線展示了x中的決策邊界,它給出了最小的誤判率。
8. Loss functions:
學習算法可以被視作優化不同的損失函數:PRML 圖7.5. 應用于支持向量機中的“鉸鏈”錯誤函數圖形,以藍色線條表示,為了邏輯回歸,隨著錯誤函數被因子1/ln(2)重新調整,它通過點(0,1),以紅色線條表示。黑色線條表示誤分,均方誤差以綠色線條表示。
9. Geometry of least squares:
ESL 圖3.2.帶有兩個預測的最小二乘回歸的N維幾何圖形。結果向量y正交投影到被輸入向量x1和x2所跨越的超平面。投影y^代表了最小二乘預測的向量。
10. Sparsity:
為什么Lasso算法(L1正規化或者拉普拉斯先驗)給出了稀疏的解決方案(比如:帶更多0的加權向量):ESL 圖3.11.lasso算法的估算圖像(左)以及嶺回歸算法的估算圖像(右)。展示了錯誤的等值線以及約束函數。分別的,當紅色橢圓是最小二乘誤差函數的等高線時,實心的藍色區域是約束區域|β1| + |β2| ≤ t以及β12 + β22 ≤ t2。cda數據分析師培訓
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25在當今數字化時代,數據分析師的重要性與日俱增。但許多人在踏上這條職業道路時,往往充滿疑惑: 如何成為一名數據分析師?成為 ...
2025-04-24