熱線電話:13121318867

登錄
首頁精彩閱讀聚類分析案例之市場細分
聚類分析案例之市場細分
2017-02-24
收藏

聚類分析案例之市場細分

從實際應用的角度看,聚類分析是數據挖掘的主要任務之一。而且聚類能夠作為一個獨立的工具獲得數據的分布狀況,觀察每一簇數據的特征,集中對特定的聚簇集合作進一步地分析。

聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。

從統計學的觀點看,聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。

機器學習的角度講,簇相當于隱藏模式。聚類是搜索簇的無監督學習過程。與分類不同,無監督學習不依賴預先定義的類或帶類標記的訓練實例,需要由聚類學習算法自動確定標記,而分類學習的實例或數據對象有類別標記。聚類是觀察式學習,而不是示例式的學習。

從實際應用的角度看,聚類分析是數據挖掘的主要任務之一。而且聚類能夠作為一個獨立的工具獲得數據的分布狀況,觀察每一簇數據的特征,集中對特定的聚簇集合作進一步地分析。聚類分析還可以作為其他算法(如分類和定性歸納算法)的預處理步驟。

聚類分析的核心思想就是物以類聚,人以群分。在市場細分領域,消費同一種類的商品或服務時,不同的客戶有不同的消費特點,通過研究這些特點,企業可以制定出不同的營銷組合,從而獲取最大的消費者剩余,這就是客戶細分的主要目的。在銷售片區劃分中,只有合理地將企業所擁有的子市場歸成幾個大的片區,才能有效地制定符合片區特點的市場營銷戰略和策略。金融領域,對基金或者股票進行分類,以選擇分類投資風險。

下面以一個汽車銷售的案例來介紹聚類分析在市場細分中的應用。

聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。

從統計學的觀點看,聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。

機器學習的角度講,簇相當于隱藏模式。聚類是搜索簇的無監督學習過程。與分類不同,無監督學習不依賴預先定義的類或帶類標記的訓練實例,需要由聚類學習算法自動確定標記,而分類學習的實例或數據對象有類別標記。聚類是觀察式學習,而不是示例式的學習。

從實際應用的角度看,聚類分析是數據挖掘的主要任務之一。而且聚類能夠作為一個獨立的工具獲得數據的分布狀況,觀察每一簇數據的特征,集中對特定的聚簇集合作進一步地分析。聚類分析還可以作為其他算法(如分類和定性歸納算法)的預處理步驟。

聚類分析的核心思想就是物以類聚,人以群分。在市場細分領域,消費同一種類的商品或服務時,不同的客戶有不同的消費特點,通過研究這些特點,企業可以制定出不同的營銷組合,從而獲取最大的消費者剩余,這就是客戶細分的主要目的。在銷售片區劃分中,只有合理地將企業所擁有的子市場歸成幾個大的片區,才能有效地制定符合片區特點的市場營銷戰略和策略。金融領域,對基金或者股票進行分類,以選擇分類投資風險。

下面以一個汽車銷售的案例來介紹聚類分析在市場細分中的應用。

商業目標

業務理解:數據名稱《汽車銷售.csv》。該案例所用的數據是一份關于汽車的數據,該數據文件包含銷售值、訂價以及各種品牌和型號的車輛的物理規格。訂價和物理規格可以從 edmunds.com 和制造商處獲得。定價為美國本土售價。如下:

表1:數據視圖

業務目標:對市場進行準確定位,為汽車的設計和市場份額預測提供參考。

數據挖掘目標:通過聚類的方式對現有的車型進行分類。

數據準備

通過數據探索對數據的質量和字段的分布進行了解,并排除有問題的行或者列優化數據質量。

第一步,我們使用統計節點審核數據的質量,從審核結果中我們發現存在缺失的數據,如下圖所示:

第二步,對缺失的數據進行處理,我們選擇使用缺失填充節點刪除這些記錄。配置如下:

建模

我們選擇層次聚類進行分析,嘗試根據各種汽車的銷售量、價格、引擎、馬力、軸距、車寬、車長、制動、排量、油耗等指標對其分類。

因為層次聚類不能自動確定分類數量,因此需要我們以自定義的方式規定最后聚類的類別數。層次聚類節點配置如下(默認配置):

可以使用交互表或者右擊層次聚類節點查看聚類的結果,如下圖所示:

再使用餅圖查看每個類的大小,結果如下:

從圖中可見,分成的三個類樣本數差異太大,cluster_0和cluster_1包含的樣本數都只有1,這樣的分類是沒有意義的,因此需要重新分類。我們嘗試在層次聚類節點的配置中指定新的聚類方法:完全。新的聚類樣本數分布如下:

cluster_0、 cluster_1、cluster_2的樣本數分別為:50、9、93。

執行后輸出樹狀/冰柱圖,可以從上往下看,一開始是一大類,往下走就分成了兩類,越往下分的類越多,最后細分到每一個記錄是一類,如下所示:

我們可以再使用條形圖查看每類的銷售量、平均價格,如下圖所示:

每類總銷量分布圖

每類平均銷量分布圖

每類平均價格分布圖

我們再看一下每類的銷售額分布情況。首先,我們需要使用Java代碼段節點或者派生節點生成銷售額字段,配置如下:

再使用餅圖查看銷售額分布情況,cluster_0、 cluster_1、cluster_2的市場份額分別為:32.39%、0.53%和67.08%,如下圖所示:

案例小結

通過這個案例,大家可以發現聚類分析確實很簡單。進行聚類計算后,主要通過圖形化探索的方式評估聚類合理性,以及在確定聚類后,分析每類的特征。

數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢