
一行R代碼來實現繁瑣的可視化
ggfortify 是一個簡單易用的R軟件包,它可以僅僅使用一行代碼來對許多受歡迎的R軟件包結果進行二維可視化,這讓統計學家以及數據科學家省去了許多繁瑣和重復的過程,不用對結果進行任何處理就能以ggplot的風格畫出好看的圖,大大地提高了工作的效率。
ggfortify 已經可以在 CRAN 上下載得到,但是由于最近很多的功能都還在快速增加,因此還是推薦大家從 Github 上下載和安裝。
library(devtools) install_github('sinhrks/ggfortify') library(ggfortify)
接下來我將簡單介紹一下怎么用ggplot2和ggfortify來很快地對PCA、聚類以及LFDA的結果進行可視化,然后將簡單介紹用ggfortify來對時間序列進行快速可視化的方法。
PCA (主成分分析)
ggfortify使ggplot2知道怎么詮釋PCA對象。加載好ggfortify包之后, 你可以對stats::prcomp和stats::princomp對象使用ggplot2::autoplot。
library(ggfortify) df <- iris[c(1, 2, 3, 4)] autoplot(prcomp(df))
你還可以選擇數據中的一列來給畫出的點按類別自動分顏色。輸入help(autoplot.prcomp)可以了解到更多的其他選擇。
autoplot(prcomp(df), data = iris, colour = 'Species')
比如說給定label = TRUE可以給每個點加上標識(以rownames為標準),也可以調整標識的大小。
autoplot(prcomp(df), data = iris, colour = 'Species', label = TRUE, label.size = 3)
給定shape = FALSE可以讓所有的點消失,只留下標識,這樣可以讓圖更清晰,辨識度更大。
autoplot(prcomp(df), data = iris, colour = 'Species', shape = FALSE, label.size = 3)
給定loadings = TRUE可以很快地畫出特征向量。
autoplot(prcomp(df), data = iris, colour = 'Species', loadings = TRUE)
同樣的,你也可以顯示特征向量的標識以及調整他們的大小,更多選擇請參考幫助文件。
autoplot(prcomp(df), data = iris, colour = 'Species', loadings = TRUE, loadings.colour = 'blue', loadings.label = TRUE, loadings.label.size = 3)
和PCA類似,ggfortify也支持stats::factanal對象??烧{的選擇也很廣泛。以下給出了簡單的例子:
注意當你使用factanal來計算分數的話,你必須給定scores的值。
d.factanal <- factanal(state.x77, factors = 3, scores = 'regression') autoplot(d.factanal, data = state.x77, colour = 'Income')
autoplot(d.factanal, label = TRUE, label.size = 3, loadings = TRUE, loadings.label = TRUE, loadings.label.size = 3)
K-均值聚類
autoplot(kmeans(USArrests, 3), data = USArrests)
autoplot(kmeans(USArrests, 3), data = USArrests, label = TRUE, label.size = 3)
其他聚類
ggfortify也支持cluster::clara,cluster::fanny,cluster::pam。
library(cluster) autoplot(clara(iris[-5], 3))
給定frame = TRUE,可以把stats::kmeans和cluster::*中的每個類圈出來。
autoplot(fanny(iris[-5], 3), frame = TRUE)
你也可以通過frame.type來選擇圈的類型。更多選擇請參照ggplot2::stat_ellipse里面的frame.type的type關鍵詞。
autoplot(pam(iris[-5], 3), frame = TRUE, frame.type = 'norm')
更多關于聚類方面的可視化請參考 Github 上的 Vignette 或者 Rpubs 上的例子。
lfda(Fisher局部判別分析)
lfda包支持一系列的 Fisher 局部判別分析方法,包括半監督 lfda,非線性 lfda。你也可以使用ggfortify來對他們的結果進行可視化。
library(lfda) # Fisher局部判別分析 (LFDA) model <- lfda(iris[-5], iris[, 5], 4, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
# 非線性核Fisher局部判別分析 (KLFDA) model <- klfda(kmatrixGauss(iris[-5]), iris[, 5], 4, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
注意對iris數據來說,不同的類之間的關系很顯然不是簡單的線性,這種情況下非線性的klfda 影響可能太強大而影響了可視化的效果,在使用前請充分理解每個算法的意義以及效果。
# 半監督Fisher局部判別分析 (SELF) model <- self(iris[-5], iris[, 5], beta = 0.1, r = 3, metric="plain") autoplot(model, data = iris, frame = TRUE, frame.colour = 'Species')
時間序列的可視化
用ggfortify可以使時間序列的可視化變得極其簡單。接下來我將給出一些簡單的例子。
ts對象
library(ggfortify) autoplot(AirPassengers)
可以使用ts.colour和ts.linetype來改變線的顏色和形狀。更多的選擇請參考help(autoplot.ts)。
autoplot(AirPassengers, ts.colour = 'red', ts.linetype = 'dashed')
多變量時間序列
library(vars) data(Canada) autoplot(Canada)
使用facets = FALSE可以把所有變量畫在一條軸上。
autoplot(Canada, facets = FALSE)
autoplot也可以理解其他的時間序列類別??芍С值腞包有:
zoo::zooreg
xts::xts
tseries::irts
一些例子:
library(xts) autoplot(as.xts(AirPassengers), ts.colour = 'green')
library(timeSeries) autoplot(as.timeSeries(AirPassengers), ts.colour = ('dodgerblue3'))
你也可以通過ts.geom來改變幾何形狀,目前支持的有line,bar和point。
autoplot(AirPassengers, ts.geom = 'bar', fill = 'blue')
autoplot(AirPassengers, ts.geom = 'point', shape = 3)
forecast包
library(forecast) d.arima <- auto.arima(AirPassengers) d.forecast <- forecast(d.arima, level = c(95), h = 50) autoplot(d.forecast)
有很多設置可供調整:
autoplot(d.forecast, ts.colour = 'firebrick1', predict.colour = 'red', predict.linetype = 'dashed', conf.int = FALSE)
vars包
library(vars) data(Canada) d.vselect <- VARselect(Canada, lag.max = 5, type = 'const')$selection[1] d.var <- VAR(Canada, p = d.vselect, type = 'const') autoplot(predict(d.var, n.ahead = 50), ts.colour = 'dodgerblue4', predict.colour = 'blue', predict.linetype = 'dashed')
changepoint包
library(changepoint) autoplot(cpt.meanvar(AirPassengers))
autoplot(cpt.meanvar(AirPassengers), cpt.colour = 'blue', cpt.linetype = 'solid')
strucchange包
library(strucchange) autoplot(breakpoints(Nile ~ 1), ts.colour = 'blue', ts.linetype = 'dashed', cpt.colour = 'dodgerblue3', cpt.linetype = 'solid')
dlm包
library(dlm) form <- function(theta){ dlmModPoly(order = 1, dV = exp(theta[1]), dW = exp(theta[2])) } model <- form(dlmMLE(Nile, parm = c(1, 1), form)$par) filtered <- dlmFilter(Nile, model) autoplot(filtered)
autoplot(filtered, ts.linetype = 'dashed', fitted.colour = 'blue')
smoothed <- dlmSmooth(filtered) autoplot(smoothed)
p <- autoplot(filtered) autoplot(smoothed, ts.colour = 'blue', p = p)
KFAS包
library(KFAS) model <- SSModel( Nile ~ SSMtrend(degree=1, Q=matrix(NA)), H=matrix(NA) ) fit <- fitSSM(model=model, inits=c(log(var(Nile)),log(var(Nile))), method="BFGS") smoothed <- KFS(fit$model) autoplot(smoothed)
使用smoothing='none'可以畫出過濾后的結果。
filtered <- KFS(fit$model, filtering="mean", smoothing='none') autoplot(filtered)
trend <- signal(smoothed, states="trend") p <- autoplot(filtered) autoplot(trend, ts.colour = 'blue', p = p)
stats包
可支持的stats包里的對象有:
stl,decomposed.ts
acf,pacf,ccf
spec.ar,spec.pgram
cpgramautoplot(stl(AirPassengers, s.window = 'periodic'), ts.colour = 'blue')
autoplot(acf(AirPassengers, plot = FALSE))
autoplot(acf(AirPassengers, plot = FALSE), conf.int.fill = '#0000FF', conf.int.value = 0.8, conf.int.type = 'ma')
autoplot(spec.ar(AirPassengers, plot = FALSE))
ggcpgram(arima.sim(list(ar = c(0.7, -0.5)), n = 50))
library(forecast) ggtsdiag(auto.arima(AirPassengers))
gglagplot(AirPassengers, lags = 4)
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25在當今數字化時代,數據分析師的重要性與日俱增。但許多人在踏上這條職業道路時,往往充滿疑惑: 如何成為一名數據分析師?成為 ...
2025-04-24