
機器學習需要哪些數學基礎
過去的幾個月中,有幾人聯系我,訴說他們對嘗試進入數據科學的世界,以及用機器學習的技術去探索統計規律并構建無可挑剔的數據驅動型產品的熱忱。然而,我發現一些人實際上缺乏必要的數學直覺和知識框架去得到有用的結果。這便是我決定寫這篇博文的主要原因。最近涌現出了很多易于使用的機器學習和深度學習的軟件包,例如 scikit-learn, Weka, Tensorflow 等等。機器學習理論是統計學、概率學、計算機科學以及算法的交叉領域,是通過從數據中的迭代學習去發現能夠被用來構建智能應用的隱藏知識。盡管機器學習和深度學習有著無限可能,然而為了更好地掌握算法的內部工作機理和得到較好的結果,對大多數這些技術有一個透徹的數學理解是必要的。
為什么要重視數學?
機器學習中的數學是重要的,有很多原因,下面我將強調其中的一些:
1. 選擇正確的算法,包括考慮到精度、訓練時間、模型復雜度、參數的數量和特征數量。
2. 選擇參數的設置和驗證策略。
3. 通過理解偏差和方差之間的 tradeoff 來識別欠擬合與過擬合。
4. 估計正確的置信區間和不確定度。
你需要什么水平的數學?
當你嘗試著去理解一個像機器學習(ML)一樣的交叉學科的時候,主要問題是理解這些技術所需要的數學知識的量以及必要的水平。這個問題的答案是多維的,也會因個人的水平和興趣而不同。關于機器學習的數學公式和理論進步正在研究之中,而且一些研究者正在研究更加先進的技術。下面我會說明我所認為的要成為一個機器學習科學家/工程師所需要的最低的數學水平以及每個數學概念的重要性。
1. 線性代數:我的一個同事 Skyler Speakman 最近說過,「線性代數是 21 世紀的數學」,我完全贊同他的說法。在機器學習領域,線性代數無處不在。主成分分析(PCA)、奇異值分解(SVD)、矩陣的特征分解、LU 分解、QR 分解、對稱矩陣、正交化和正交歸一化、矩陣運算、投影、特征值和特征向量、向量空間和范數(Norms),這些都是理解機器學習中所使用的優化方法所需要的。令人驚奇的是現在有很多關于線性代數的在線資源。我一直說,由于大量的資源在互聯網是可以獲取的,因而傳統的教室正在消失。
2. 概率論和統計學:機器學習和統計學并不是迥然不同的領域。事實上,最近就有人將機器學習定義為「在機器上做統計」。機器學習需要的一些概率和統計理論分別是:組合、概率規則和公理、貝葉斯定理、隨機變量、方差和期望、條件和聯合分布、標準分布(伯努利、二項式、多項式、均勻和高斯)、時刻生成函數(Moment Generating Functions)、最大似然估計(MLE)、先驗和后驗、最大后驗估計(MAP)和抽樣方法。
3. 多元微積分:一些必要的主題包括微分和積分、偏微分、向量值函數、方向梯度、海森、雅可比、拉普拉斯、拉格朗日分布。
4. 算法和復雜優化:這對理解我們的機器學習算法的計算效率和可擴展性以及利用我們的數據集中稀疏性很重要。需要的知識有數據結構(二叉樹、散列、堆、棧等)、動態規劃、隨機和子線性算法、圖論、梯度/隨機下降和原始對偶方法。
5. 其他:這包括以上四個主要領域沒有涵蓋的數學主題。它們是實數和復數分析(集合和序列、拓撲學、度量空間、單值連續函數、極限)、信息論(熵和信息增益)、函數空間和流形學習。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25在當今數字化時代,數據分析師的重要性與日俱增。但許多人在踏上這條職業道路時,往往充滿疑惑: 如何成為一名數據分析師?成為 ...
2025-04-24