
Python基礎學習之常見的內建函數整理
Python針對眾多的類型,提供了眾多的內建函數來處理,這些內建函數功用在于其往往可對多種類型對象進行類似的操作,即多種類型對象的共有的操作,下面話不多說了,來一看看詳細的介紹吧。
map()
map()函數接受兩個參數,一個是函數,一個是可迭代對象(Iterable),map將傳入的函數依次作用到可迭代對象的每一個元素,并把結果作為迭代器(Iterator)返回。
舉例說明,有一個函數f(x)=x^2 ,要把這個函數作用到一個list[1,2,3,4,5,6,7,8,9]上:
運用簡單的循環可以實現:
>>> def f(x):
... return x * x
...
L = []
for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
L.append(f(n))
print(L)
運用高階函數map() :
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
結果r是一個迭代器,迭代器是惰性序列,通過list()函數讓它把整個序列都計算出來并返回一個list。
如果要把這個list所有數字轉為字符串利用map()就簡單了:
>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9']
小練習:利用map()函數,把用戶輸入的不規范的英文名字變為首字母大寫其他小寫的規范名字。輸入['adam', 'LISA', 'barT'],輸出['Adam', 'Lisa', 'Bart']
def normalize(name):
return name.capitalize()
l1=["adam","LISA","barT"]
l2=list(map(normalize,l1))
print(l2)
reduce()
reduce()函數也是接受兩個參數,一個是函數,一個是可迭代對象,reduce將傳入的函數作用到可迭代對象的每個元素的結果做累計計算。然后將最終結果返回。
效果就是:reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
舉例說明,將序列[1,2,3,4,5]變換成整數12345:
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 2, 3, 4, 5])
12345
小練習:編寫一個prod()函數,可以接受一個list并利用reduce求積:
from functools import reduce
def pro (x,y):
return x * y
def prod(L):
return reduce(pro,L)
print(prod([1,3,5,7]))
map()和reduce()綜合練習:編寫str2float函數,把字符串'123.456'轉換成浮點型123.456
CHAR_TO_FLOAT = {
'0': 0,'1': 1,'2': 2,'3': 3,'4': 4,'5': 5,'6': 6,'7': 7,'8': 8,'9': 9, '.': -1
}
def str2float(s):
nums = map(lambda ch:CHAR_TO_FLOAT[ch],s)
point = 0
def to_float(f,n):
nonlocal point
if n==-1:
point =1
return f
if point ==0:
return f*10+n
else:
point =point *10
return f + n/point
return reduce(to_float,nums,0)#第三個參數0是初始值,對應to_float中f
filter()
filter()函數用于過濾序列,filter()也接受一個函數和一個序列,filter()把傳入的函數依次作用于每個元素,然后根據返回值是True還是False決定保留還是丟棄該元素。
舉例說明,刪除list中的偶數:
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 結果: [1, 5, 9, 15]
小練習:用filter()求素數
計算素數的一個方法是埃氏篩法,它的算法理解起來非常簡單:
首先,列出從2開始的所有自然數,構造一個序列:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取序列的第一個數2,它一定是素數,然后用2把序列的2的倍數篩掉:
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一個數3,它一定是素數,然后用3把序列的3的倍數篩掉:
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一個數5,然后用5把序列的5的倍數篩掉:
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
不斷篩下去,就可以得到所有的素數。
用Python實現這個算法,先構造一個從3開始的期數數列:
def _odd_iter():
n = 1
while True:
n = n + 2
yield n
#這是一個生成器,并且是一個無線序列
定義一個篩選函數:
def _not_divisible(n):
return lambda x: x % n > 0
定義一個生成器不斷返回下一個素數:
def primes():
yield 2
it = _odd_iter() # 初始序列
while True:
n = next(it) # 返回序列的第一個數
yield n
it = filter(_not_divisible(n), it) # 構造新序列
打印100以內素數:
for n in primes():
if n < 100:
print(n)
else:
break
sorted()
python內置的sorted()函數可以對list進行排序:
>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
sorted()函數也是一個高階函數,還可以接受一個key函數來實現自定義排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
key指定的函數將作用于list的每一個元素上,并根據key函數返回的結果進行排序.
默認情況下,對字符串排序,是按照ASCII的大小比較的,由于'Z' < 'a',結果,大寫字母Z會排在小寫字母a的前面。如果想忽略大小寫可都轉換成小寫來比較:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
['about', 'bob', 'Credit', 'Zoo']
要進行反向排序,不必改動key函數,可以傳入第三個參數reverse=True:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']
小練習:假設我們用一組tuple表示學生名字和成績:L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)] 。用sorted()對上述列表分別按c成績從高到低排序:
L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)]
def by_score(t):
for i in t:
return t[1]
L2=sorted(L,key= by_score)
print(L2)
運用匿名函數更簡潔:
L2=sorted(L,key=lambda t:t[1])
print(L2)
總結
以上就是這篇文章的全部內容了,希望本文的內容對大家的學習或者工作能帶來一定的幫助
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25