
python對DICOM圖像的讀取方法詳解
DICOM(Digital Imaging and Communications in Medicine)即醫學數字成像和通信,是醫學圖像和相關信息的國際標準(ISO 12052)。下面這篇文章主要給大家介紹了關于python對DICOM圖像讀取的相關資料,需要的朋友可以參考借鑒,下面來一起看看吧。
DICOM介紹
DICOM3.0圖像,由醫學影像設備產生標準醫學影像圖像,DICOM被廣泛應用于放射醫療,心血管成像以及放射診療診斷設備(X射線,CT,核磁共振,超聲等),并且在眼科和牙科等其它醫學領域得到越來越深入廣泛的應用。在數以萬計的在用醫學成像設備中,DICOM是部署最為廣泛的醫療信息標準之一。當前大約有百億級符合DICOM標準的醫學圖像用于臨床使用。
看似神秘的圖像文件,究竟是如何讀取呢?網上隨便 一搜,都有很多方法,但缺乏比較系統的使用方法,下文綜合百度資料,結合python2.7,講解如何讀取及使用DICOM圖像。
讀取DICOM圖像,需要以下幾個庫:pydicom、CV2、numpy、matplotlib。pydicom專門處理dicom圖像的python專用包,numpy高效處理科學計算的包,依據數據繪圖的庫。
安裝:
pip install matplotlib
pip install opencv-python #opencv的安裝,小度上基本都是要下載包,安裝包后把包復制到某個文件夾下,
#后來我在https://pypi.python.org/pypi/opencv-python找到這種pip的安裝方法,親測可用
pip install pydicom
pip install numpy
如果沒有記錯,安裝pydicom時,也會自動把numpy安裝上。
安裝好這些庫后,就可以對dicom文件操作。
具體看下面代碼:
#-*-coding:utf-8-*-
import cv2
import numpy
import dicom
from matplotlib import pyplot as plt
dcm = dicom.read_file("AT0001_100225002.DCM")
dcm.image = dcm.pixel_array * dcm.RescaleSlope + dcm.RescaleIntercept
slices = []
slices.append(dcm)
img = slices[ int(len(slices)/2) ].image.copy()
ret,img = cv2.threshold(img, 90,3071, cv2.THRESH_BINARY)
img = numpy.uint8(img)
im2, contours, _ = cv2.findContours(img,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
mask = numpy.zeros(img.shape, numpy.uint8)
for contour in contours:
cv2.fillPoly(mask, [contour], 255)
img[(mask > 0)] = 255
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(2,2))
img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
img2 = slices[ int(len(slices)/2) ].image.copy()
img2[(img == 0)] = -2000
plt.figure(figsize=(12, 12))
plt.subplot(131)
plt.imshow(slices[int(len(slices) / 2)].image, 'gray')
plt.title('Original')
plt.subplot(132)
plt.imshow(img, 'gray')
plt.title('Mask')
plt.subplot(133)
plt.imshow(img2, 'gray')
plt.title('Result')
plt.show()
在DICOM圖像里,包含了患者的相關信息的字典,我們可以通過dir查看DICOM文件有什么信息,可以通過字典返回相關的值。
import dicom
import json
def loadFileInformation(filename):
information = {}
ds = dicom.read_file(filename)
information['PatientID'] = ds.PatientID
information['PatientName'] = ds.PatientName
information['PatientBirthDate'] = ds.PatientBirthDate
information['PatientSex'] = ds.PatientSex
information['StudyID'] = ds.StudyID
information['StudyDate'] = ds.StudyDate
information['StudyTime'] = ds.StudyTime
information['InstitutionName'] = ds.InstitutionName
information['Manufacturer'] = ds.Manufacturer
print dir(ds)
print type(information)
return information
a=loadFileInformation('AT0001_100225002.DCM')
print a
總結
以上就是這篇文章的全部內容,希望本文的內容對大家的學習或者工作能帶來一定的幫助
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25