熱線電話:13121318867

登錄
首頁精彩閱讀Python實現曲線點抽稀算法的示例
Python實現曲線點抽稀算法的示例
2018-01-22
收藏

Python實現曲線點抽稀算法的示例

本文介紹了Python實現曲線點抽稀算法的示例,分享給大家,具體如下:

目錄

何為抽稀

道格拉斯-普克(Douglas-Peuker)算法

垂距限值法

最后

正文

何為抽稀

在處理矢量化數據時,記錄中往往會有很多重復數據,對進一步數據處理帶來諸多不便。多余的數據一方面浪費了較多的存儲空間,另一方面造成所要表達的圖形不光滑或不符合標準。因此要通過某種規則,在保證矢量曲線形狀不變的情況下, 最大限度地減少數據點個數,這個過程稱為抽稀。

通俗的講就是對曲線進行采樣簡化,即在曲線上取有限個點,將其變為折線,并且能夠在一定程度保持原有形狀。比較常用的兩種抽稀算法是:道格拉斯-普克(Douglas-Peuker)算法和垂距限值法。

道格拉斯-普克(Douglas-Peuker)算法

Douglas-Peuker算法(DP算法)過程如下:

1、連接曲線首尾兩點A、B;

2、依次計算曲線上所有點到A、B兩點所在曲線的距離;

3、計算最大距離D,如果D小于閾值threshold,則去掉曲線上出A、B外的所有點;如果D大于閾值threshold,則把曲線以最大距離分割成兩段;

4、對所有曲線分段重復1-3步驟,知道所有D均小于閾值。即完成抽稀。
這種算法的抽稀精度與閾值有很大關系,閾值越大,簡化程度越大,點減少的越多;反之簡化程度越低,點保留的越多,形狀也越趨于原曲線。

下面是Python代碼實現:

# -*- coding: utf-8 -*-
"""------------------------------------------------- File Name:  DouglasPeuker Description : 道格拉斯-普克抽稀算法 Author :    J_hao date:     2017/8/16------------------------------------------------- Change Activity:         2017/8/16: 道格拉斯-普克抽稀算法-------------------------------------------------"""
from __future__ import division
 
from math import sqrt, pow
 
__author__ = 'J_hao'
 
THRESHOLD = 0.0001 # 閾值
 
 
def point2LineDistance(point_a, point_b, point_c):
  """  計算點a到點b c所在直線的距離  :param point_a:  :param point_b:  :param point_c:  :return:  """
  # 首先計算b c 所在直線的斜率和截距
  if point_b[0] == point_c[0]:
    return 9999999
  slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])
  intercept = point_b[1] - slope * point_b[0]
 
  # 計算點a到b c所在直線的距離
  distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))
  return distance
 
 
class DouglasPeuker(object):
  def__init__(self):
    self.threshold = THRESHOLD
    self.qualify_list = list()
    self.disqualify_list = list()
 
  def diluting(self, point_list):
    """    抽稀    :param point_list:二維點列表    :return:    """
    if len(point_list) < 3:
      self.qualify_list.extend(point_list[::-1])
    else:
      # 找到與收尾兩點連線距離最大的點
      max_distance_index, max_distance = 0, 0
      for index, point in enumerate(point_list):
        if index in [0, len(point_list) - 1]:
          continue
        distance = point2LineDistance(point, point_list[0], point_list[-1])
        if distance > max_distance:
          max_distance_index = index
          max_distance = distance
 
      # 若最大距離小于閾值,則去掉所有中間點。 反之,則將曲線按最大距離點分割
      if max_distance < self.threshold:
        self.qualify_list.append(point_list[-1])
        self.qualify_list.append(point_list[0])
      else:
        # 將曲線按最大距離的點分割成兩段
        sequence_a = point_list[:max_distance_index]
        sequence_b = point_list[max_distance_index:]
 
        for sequence in [sequence_a, sequence_b]:
          if len(sequence) < 3 and sequence == sequence_b:
            self.qualify_list.extend(sequence[::-1])
          else:
            self.disqualify_list.append(sequence)
 
  def main(self, point_list):
    self.diluting(point_list)
    while len(self.disqualify_list) > 0:
      self.diluting(self.disqualify_list.pop())
    print self.qualify_list
    print len(self.qualify_list)
 
 
if __name__ == '__main__':
  d = DouglasPeuker()
  d.main([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],
      [104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],
      [104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],
      [104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],
      [104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],
      [104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],
      [104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],
      [104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],
      [104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],
      [104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],
      [104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],
      [104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],
      [104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],
      [104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],
      [104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],
      [104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],
      [104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],
      [104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],
      [104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])

垂距限值法

垂距限值法其實和DP算法原理一樣,但是垂距限值不是從整體角度考慮,而是依次掃描每一個點,檢查是否符合要求。

算法過程如下:

1、以第二個點開始,計算第二個點到前一個點和后一個點所在直線的距離d;
2、如果d大于閾值,則保留第二個點,計算第三個點到第二個點和第四個點所在直線的距離d;若d小于閾值則舍棄第二個點,計算第三個點到第一個點和第四個點所在直線的距離d;
3、依次類推,直線曲線上倒數第二個點。

下面是Python代碼實現:

# -*- coding: utf-8 -*-
"""------------------------------------------------- File Name:  LimitVerticalDistance Description : 垂距限值抽稀算法 Author :    J_hao date:     2017/8/17------------------------------------------------- Change Activity:         2017/8/17:-------------------------------------------------"""
from __future__ import division
 
from math import sqrt, pow
 
__author__ = 'J_hao'
 
THRESHOLD = 0.0001 # 閾值
 
 
def point2LineDistance(point_a, point_b, point_c):
  """  計算點a到點b c所在直線的距離  :param point_a:  :param point_b:  :param point_c:  :return:  """
  # 首先計算b c 所在直線的斜率和截距
  if point_b[0] == point_c[0]:
    return 9999999
  slope = (point_b[1] - point_c[1]) / (point_b[0] - point_c[0])
  intercept = point_b[1] - slope * point_b[0]
 
  # 計算點a到b c所在直線的距離
  distance = abs(slope * point_a[0] - point_a[1] + intercept) / sqrt(1 + pow(slope, 2))
  return distance
 
 
class LimitVerticalDistance(object):
  def__init__(self):
    self.threshold = THRESHOLD
    self.qualify_list = list()
 
  def diluting(self, point_list):
    """    抽稀    :param point_list:二維點列表    :return:    """
    self.qualify_list.append(point_list[0])
    check_index = 1
    while check_index < len(point_list) - 1:
      distance = point2LineDistance(point_list[check_index],
                     self.qualify_list[-1],
                     point_list[check_index + 1])
 
      if distance < self.threshold:
        check_index += 1
      else:
        self.qualify_list.append(point_list[check_index])
        check_index += 1
    return self.qualify_list
 
 
if __name__ == '__main__':
  l = LimitVerticalDistance()
  diluting = l.diluting([[104.066228, 30.644527], [104.066279, 30.643528], [104.066296, 30.642528], [104.066314, 30.641529],
      [104.066332, 30.640529], [104.066383, 30.639530], [104.066400, 30.638530], [104.066451, 30.637531],
      [104.066468, 30.636532], [104.066518, 30.635533], [104.066535, 30.634533], [104.066586, 30.633534],
      [104.066636, 30.632536], [104.066686, 30.631537], [104.066735, 30.630538], [104.066785, 30.629539],
      [104.066802, 30.628539], [104.066820, 30.627540], [104.066871, 30.626541], [104.066888, 30.625541],
      [104.066906, 30.624541], [104.066924, 30.623541], [104.066942, 30.622542], [104.066960, 30.621542],
      [104.067011, 30.620543], [104.066122, 30.620086], [104.065124, 30.620021], [104.064124, 30.620022],
      [104.063124, 30.619990], [104.062125, 30.619958], [104.061125, 30.619926], [104.060126, 30.619894],
      [104.059126, 30.619895], [104.058127, 30.619928], [104.057518, 30.620722], [104.057625, 30.621716],
      [104.057735, 30.622710], [104.057878, 30.623700], [104.057984, 30.624694], [104.058094, 30.625688],
      [104.058204, 30.626682], [104.058315, 30.627676], [104.058425, 30.628670], [104.058502, 30.629667],
      [104.058518, 30.630667], [104.058503, 30.631667], [104.058521, 30.632666], [104.057664, 30.633182],
      [104.056664, 30.633174], [104.055664, 30.633166], [104.054672, 30.633289], [104.053758, 30.633694],
      [104.052852, 30.634118], [104.052623, 30.635091], [104.053145, 30.635945], [104.053675, 30.636793],
      [104.054200, 30.637643], [104.054756, 30.638475], [104.055295, 30.639317], [104.055843, 30.640153],
      [104.056387, 30.640993], [104.056933, 30.641830], [104.057478, 30.642669], [104.058023, 30.643507],
      [104.058595, 30.644327], [104.059152, 30.645158], [104.059663, 30.646018], [104.060171, 30.646879],
      [104.061170, 30.646855], [104.062168, 30.646781], [104.063167, 30.646823], [104.064167, 30.646814],
      [104.065163, 30.646725], [104.066157, 30.646618], [104.066231, 30.645620], [104.066247, 30.644621], ])
  print len(diluting)
  print(diluting)

最后

其實DP算法和垂距限值法原理一樣,DP算法是從整體上考慮一條完整的曲線,實現時較垂距限值法復雜,但垂距限值法可能會在某些情況下導致局部最優。另外在實際使用中發現采用點到另外兩點所在直線距離的方法來判斷偏離,在曲線弧度比較大的情況下比較準確。如果在曲線弧度比較小,彎??程度不明顯時,這種方法抽稀效果不是很理想,建議使用三點所圍成的三角形面積作為判斷標準。下面是抽稀效果:

以上就是本文的全部內容,希望對大家的學習有所幫助


數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢