熱線電話:13121318867

登錄
首頁精彩閱讀對數據科學家來說最重要的算法和統計模型
對數據科學家來說最重要的算法和統計模型
2018-05-31
收藏

對數據科學家來說最重要的算法和統計模型

作為一個在這個行業已經好幾年的數據科學家,在LinkedIn和QuoLa上,我經常接觸一些學生或者想轉行的人,幫助他們進行機器學習的職業建議或指導方面相關的課程選擇。一些問題圍繞教育途徑和程序的選擇,但許多問題的焦點是今天在數據科學領域什么樣的算法或模型是常見的。
  由于可供選擇的算法太多了,很難知道從哪里開始學起。課程可能包括在當今工業中使用的不是很典型的算法,而課程可能沒有包含目前不是很流行的但特別有用的方法?;谲浖某绦蚩梢耘懦匾慕y計概念,并且基于數學的程序可以跳過算法設計中的一些關鍵主題。

\
  我為一些有追求的數據專家整理了一個簡短的指南,特別是關注統計模型和機器學習模型(有監督學習和無監督學習);這些主題包括教科書、畢業生水平的統計學課程、數據科學訓練營和其它培訓資源。(其中有些包含在文章的參考部分)。由于機器學習是統計學的一個分支,機器學習算法在技術上歸類于統計學知識,還有數據挖掘和更多的基于計算機科學的方法。然而,由于一些算法與計算機科學課程的內容相重疊,并且因為許多人把傳統的統計方法從新方法中分離出來,所以我將把列表中的兩個分支也分開了。

\
  統計學的方法包括在bootcamps和證書程序中概述的一些更常見的方法,還有一些通常在研究生統計學程序中所教授的不太常見的方法(但在實踐中可以有很大的優勢)。所有建議的工具都是我經常使用的工具:
  1)廣義線性模型,它構成了大多數監督機器學習方法的基礎(包括邏輯回歸和Tweedie回歸,它概括了在工業中遇到的大多數計數或連續結果……)
  2) 時間序列方法(ARIMA, SSA, 基于機器學習的方法)
  3) 結構方程建模 (模擬和測試介導途徑)
  4) 因子分析法(調查設計與驗證的探索和驗證)
  5) 功率分析/試驗設計 (特別是基于仿真的試驗設計,以免分析過度)
  6) 非參數檢驗(從零開始的推導, 尤其通過模擬)/MCMC
  7) K均值聚類
  8) 貝葉斯方法(Na?ve Bayes, 貝葉斯模型求平均值, 貝葉斯自適應試驗...)
  9) 懲罰回歸模型 (elastic net, LASSO, LARS...) ,通常給模型增加懲罰因素(SVM, XGBoost...), 這對于預測值超過觀測值的數據集是有用的(常見于基因組學與社會科學研究)
  10) 樣條模型(MARS...) 用于靈活性建模過程
  11)馬爾可夫鏈和隨機過程 (時間序列建模與預測建模的另一種方法)
  12)缺失數據填補方案及其假設(missForest, MICE...)
  13) 生存分析(非常有助于制造建模和消耗過程)
  14) 混合建模
  15) 統計推斷與分組測試(A/B測試和在許多交易活動中實施更復雜的設計)
  機器學習擴展了許多這樣框架,特別是K均值聚類和廣義線性建模。在許多行業中一些有用的常見技術(還有一些更模糊的算法,在bootcamps或證書程序中出人意料的有用,但學校里很少教) 包括:
  1)回歸/分類樹(用于高精度、可解釋性好、計算費用低的廣義線性模型的早期推廣)
  2)維數約簡(PCA和多樣學習方法如MDS和tSNE)
  3)經典前饋神經網絡
  4)裝袋組合(構成了隨機森林KNN回歸整合等算法的基礎)
  7)加速整合(這是梯度提升XGBoost算法的基礎)
  8)參數優化或設計項目的優化算法(遺傳算法,量子啟發進化算法,模擬鍛煉,粒子群優化)
  9)拓撲數據分析工具,特別適合于小樣本大小的無監督學習(持久同調, Morse-Smale聚類, Mapper...)
  10)深度學習架構(一般的深度架構)
  11) KNN局部建模方法(回歸, 分類)
  12)基于梯度的優化方法
  13)網絡度量與算法(中央度量法、中間性、多樣性、熵、拉普拉斯算子、流行病擴散、譜聚類)
  14)深度體系架構中的卷積和匯聚層(專門適用于計算機視覺和圖像分類模型)
  15)層次聚類 (聚類和拓撲數據分析工具相關)
  16)貝葉斯網絡(路徑挖掘)
  17)復雜性與動態系統(與微分方程有關,但通常用于模擬沒有已知驅動程序的系統)
  依靠所選擇的行業,可能需要與自然語言處理(NLP)或計算機視覺相關的附加算法。然而,這些是數據科學和機器學習的專門領域,進入這些領域的人通常已經是那個特定領域的專家。

數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢