
認清現實吧 中國大數據產業的痛點和困難
大數據作為一個新興的產業,一直在處于輿論的風口浪尖。就像互聯網+的概念一樣,大數據被神話了,被送上了“宗教”的神壇。大數據企業總是有一個擔心,生怕大數據被捧得的太高,將來可能會被摔的很慘。
2015年中國大數據產業的熱度從貴陽大數據交易所開始,到9月國務院的2015第50號文《促進大數據發展行動綱要》進入高峰,相信10月份的烏鎮互聯網大會上,大數據還會是一個大的熱點。
大數據論壇上,數據產品和解決方案被介紹的很多。數據給企業帶來的具體價值、數據應用場景、大數據產業的痛點介紹的很少。中國大數據產業經歷著很多痛苦,大數據產業前景很好,但是大數據企業卻很難做大,很難實現質的飛躍。中國大數據產業的痛點和困難如下。
中國大數據企業大概有200多家,將近60%集中在北京,以小微企業為主,年銷售額達到十億人民幣的企業幾乎沒有。大數據產業處于春秋時代早期,各家諸侯割地而立,每家占領了一塊小的細分領域,很難做大,都面臨著同行的激烈競爭,有的領域例如輿情監控已成為紅海。
大數據企業人數大多在幾十人到幾百人,少有千人以上的企業。沒有一家大數據企業可以統領一個行業,沒有一家企業占有細分市場10%的份額,沒有一家大數據企業建立了行業標準,領導行業發展。
中國大數據產業處于極度分散狀態,優秀的人才分布在不同企業,很難形成人才合力。各家企業規模小,很難在企業做深做大,很難利用大數據幫助企業實現業務提升。大多數企業的工具和數據很難滿足企業整體的數據要求,中國的數據挖掘和分析產品也很難和國外的產品進行競爭。
大數據產業如果要形成產業優勢,必須需要一批領軍企業。參考國外大數據產業,中國在大數據基礎架構,數據產品,數據工具、數據清洗和數據挖掘、數據分析、數據人才都需要產生一批標桿企業。每個領軍企業都規模應該在千人以上,銷售額應該在百億以上,否則很難形成技術和人才優勢,也很難利用大數據幫助客戶實現業務提升。
貴陽大數據交易所《2015年中國大數據交易白皮書》提到2014年中國大數據市場規模為767億元。這個數字看上去不錯,估計其實真正和大數據工具和大數據產品相關的不足20%(業務價值提升)。大多數的經費都用于大數據基礎平臺(存儲和計算)、咨詢、報告等和業務價值提升相關度不大的領域。中國大數據市場銷售額大多數集中在傳統的IT企業例如IBM,Oracle,EMC,Intel,華為,聯想等。真正大數據企業所有市場份額加起來可能就在百億元左右。
中國大數據企業規模過小,領軍企業缺少,行業過于分散,這些都是制約中國大數據產業發展的因素,也是產業做大的一個痛點。
數據是大數據產業發展的基礎,具有商業價值的數據可以幫助企業洞察客戶、數字化運營、風險管控、精準營銷、預測和決策等。具有商業價值的數據和商業分析真正能夠幫助企業提升業務,創造出新的價值。
中國的大數據市場還不成熟,很多大數據企業擁的數據都是片段的數據,很難形成完整的,具有商業價值的數據。大數據市場的數據質量和企業的數據需求有較大的差距。外部數據大多處于孤島狀態,數據之間很少流動和整合;孤立、不流動、沒有整合的數據很難幫到企業,很多需要數據的企業不得不從多個大數據企業采購數據,效率很低,采購來的數據價值不高,數據整合的難度較大,數據采購的整體費用過高。
大家都看到了數據分散的弊端,于是很多地方都建立了大數據交易市場,幫助大家進行數據交易和數據采購。由于缺少法律保護,很多企業不太想在交易市場進行數據交易,往往還是采用一對一的數據交易,這種交易方式可以保護交易雙方的利益。具有商業價值的數據還在開發中,大數據交易市場,缺少大量可以進行交易的數據。大數據交易市場這種商業模式,還需要用很長的時間去證明。
中國質量最好的數據在金融行業、BAT、電信運營商,這些企業比較謹慎,很難向外部輸出數據。這三大行業自身的主營業務也不在數據,其數據產品生產和輸出的愿望也不強烈。政府的數據正在逐步開放,但是其數據質量、集中度、輸出方式等多存在很大多挑戰。在中國大規模的數據開放,至少需要3年時間才能達到商業應用要求。
大多數企業對數據有需求,但是其對數據商業敏感度很低。對數據商業應用的場景以及數據技術了解很少。即使是數據商業敏感度較高的銀行,至少要溝通三次以上,其才能夠建立起數據價值理念。其他行業例如制造業,房地產業,零售業,他們的數據商業敏感度更低。甚至萬科的王石也大聲疾呼,不要和房地產業談大數據應用,房產行業數據還不全,很多還是手工數據。于是某個領先的電商開始幫助萬科進行數據規劃建設,研究大數據在房地產行業的應用。
已有的大數據企業商業案例中,大部分都是大數據企業主動去找客戶談合作,為企業提供數據產品、數據工具或數據技術,目的是幫助企業提升業務。但是這種商業模式很累,市場很難被引爆,被動的數據商業應用,往往和業務結合較弱,無法迅速幫助企業利用數據提升業務,同時也無法解決業務發展瓶頸。
企業內部人士深度了解業務需求,他們缺少的是市場數據和消費者反饋,缺少的數據分析方法和工具。企業內部人士更應該成為大數據商業應用的主力,參加一些行業活動,從需求出發,主動尋找數據和解決方案。移動互聯網時代,商業競爭策略很清晰,一個是快,一個是要利用數據進行決策。
大數據產業的發展,不僅僅是大數據企業自身的事情,也是各家企業自身的事情。企業客戶也應該依據業務需要,主動到市場尋找數據和解決方案,提升數據商業敏感度,從業務場景出發,尋找具有價值的數據。
市場上所有大數據企業和客戶都面臨一個難題,就是數據解決方案同客戶業務結合的深度不夠,數據對業務整體推動效果不如期望,這也是大數據產業爆發的一個痛點。由于外部數據質量、企業用戶數據敏感度、企業管理方式、商業數據人才等問題,大數據解決方案很難和業務深度結合。
大數據核心價值就是揭示事務發展規律,幫助企業利用數據進行科學決策。目前大數據的商業應用領域主要集中在數據采集、數據存儲、數據計算、用戶畫像、精準營銷等領域。大數據最具商業價值的預測和輔助決策功能并沒有被充分利用。特別是在重大戰略決策方面,大數據的作用并不明顯。企業的產品開發,市場策略,戰略決策還是依靠過去的精英決策和經驗主義。未來社會只有兩類企業,一種是利用數據發展的企業,另外一種是不重視數據被淘汰的企業。
大數據企業如果想發展壯大,如果想成為行業領先的企業,其必須放棄短期利益,深入到客戶的運營中去,了解客戶的數據,了解客戶的業務,了解客戶的商業需求。同時利用數據了解客戶,了解市場,了解業務場景。數據和業務深度結合的核心是掌握正確的數據、正確的方法、正確的工具。業務人員要懂數據,技術人員要懂業務。復合型數據人才是數據生意的關鍵,業務人員掌握數據技術的門檻較高,但是技術人員了解業務的門檻很低,復合性人才傾向于從技術人才培養開始。
企業內部的數據人才和大數據企業的數據人才需要互相學習,了解對方環境和需求,在同一個平臺上進行對話和溝通。數據團隊需要深入了解業務場景和背后的規律,從業務出發,從場景出發,從數據出發,將大數據解決方案同業務深度結合,利用數據推動業務發展,發揮大數據預測規律的核心價值。
傳統的數據挖掘工具和BI系統存在很久了,通過各類報表展示,讓管理層了解企業運營信息,過去的確幫助企業提高管理水平,達到了預期目的。
在大數據時代,企業需要的是實時數據,需要的是高效工具,需要的是決策支持和預測。傳統的數據挖掘工具的性能和靈活性已經不能滿足企業的需要,另外非機構化數據的應用也對傳統數據工具提出了挑戰。BI領域中的SAS,SPSS,TD等數據工具越來越被邊緣化,R語言正在成為數據統計和可視化的新寵。
數據的時間價值正在得到重視,特別是金融企業,所有的業務部門都期望在最短的時間里,看到資金使用情況,客戶交易情況,風險管控情況。企業越早了解信息,就會越早進行決策,時間就是Money。過去數據需求可能是T+5或者T+30,現在的數據需求往往是T+1或者T+0,數據實時性、準確性、相關度被提到了一個非常重要的地位。業務的需求已經很明顯了,但是數據工具和人才卻是一個很大的挑戰。
中國200多家大數據企業,看到了大數據產業的曙光,看到了大數據產業的價值,同時也在經歷著大數據企業的痛苦。大數據產業發展很快,市場正在逐步變大,但是其產業優勢不明顯,優勢企業很少,數據商業化較慢,市場還不成熟,客戶數據商業敏感度較低,缺乏高質量數據工具和人才。所有大數據企業內心的感受就是,站在了時代的風口,選對了方向和行業,但是發展壯大還是很難。200多家大數據企業正在努力耕耘著大數據產業,痛并快樂著。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25