
MSE(Mean Square Error 均方誤差),
LMS(LeastMean Square 最小均方),
LSM(Least Square Methods 最小二乘法),
MLE(MaximumLikelihood Estimation最大似然估計),
QP(Quadratic Programming 二次規劃),
CP(Conditional Probability條件概率),
JP(Joint Probability 聯合概率),
MP(Marginal Probability邊緣概率),
Bayesian Formula(貝葉斯公式),
L1 /L2Regularization(L1/L2正則,
以及更多的,現在比較火的L2.5正則等),
GD(GradientDescent 梯度下降),
SGD(Stochastic Gradient Descent 隨機梯度下降),
Eigenvalue(特征值),
Eigenvector(特征向量),
QR-decomposition(QR分解),
Quantile (分位數),
Covariance(協方差矩陣)。
Common Distribution(常見分布):
Discrete Distribution(離散型分布):
BernoulliDistribution/Binomial(貝努利分布/二項分布),
Negative BinomialDistribution(負二項分布),
MultinomialDistribution(多項式分布),
Geometric Distribution(幾何分布),
HypergeometricDistribution(超幾何分布),
Poisson Distribution (泊松分布)。
Continuous Distribution (連續型分布):
UniformDistribution(均勻分布),
Normal Distribution /Guassian Distribution(正態分布/高斯分布),
ExponentialDistribution(指數分布),
Lognormal Distribution(對數正態分布),
GammaDistribution(Gamma分布),
Beta Distribution(Beta分布),
Dirichlet Distribution(狄利克雷分布),
Rayleigh Distribution(瑞利分布),
Cauchy Distribution(柯西分布),
Weibull Distribution (韋伯分布)。
Three Sampling Distribution(三大抽樣分布):
Chi-squareDistribution(卡方分布),
t-distribution(t-distribution),
F-distribution(F-分布)。
Data Pre-processing(數據預處理):
Missing Value Imputation(缺失值填充),
Discretization(離散化),Mapping(映射),
Normalization(歸一化/標準化)。
Sampling(采樣):
Simple Random Sampling(簡單隨機采樣),
OfflineSampling(離線等可能K采樣),
Online Sampling(在線等可能K采樣),
Ratio-based Sampling(等比例隨機采樣),
Acceptance-RejectionSampling(接受-拒絕采樣),
Importance Sampling(重要性采樣),
MCMC(MarkovChain Monte Carlo 馬爾科夫蒙特卡羅采樣算法:Metropolis-Hasting& Gibbs)。
Clustering(聚類):
K-Means,
K-Mediods,
二分K-Means,
FK-Means,
Canopy,
Spectral-KMeans(譜聚類),
GMM-EM(混合高斯模型-期望最大化算法解決),
K-Pototypes,CLARANS(基于劃分),
BIRCH(基于層次),
CURE(基于層次),
DBSCAN(基于密度),
CLIQUE(基于密度和基于網格)。
Classification&Regression(分類&回歸):
LR(Linear Regression 線性回歸),
LR(LogisticRegression邏輯回歸),
SR(Softmax Regression 多分類邏輯回歸),
GLM(GeneralizedLinear Model 廣義線性模型),
RR(Ridge Regression 嶺回歸/L2正則最小二乘回歸),
LASSO(Least Absolute Shrinkage andSelectionator Operator L1正則最小二乘回歸),
RF(隨機森林),
DT(DecisionTree決策樹),
GBDT(Gradient BoostingDecision Tree 梯度下降決策樹),
CART(ClassificationAnd Regression Tree 分類回歸樹),
KNN(K-Nearest Neighbor K近鄰),
SVM(Support VectorMachine),
KF(KernelFunction 核函數PolynomialKernel Function 多項式核函、
Guassian KernelFunction 高斯核函數/Radial BasisFunction RBF徑向基函數、
String KernelFunction 字符串核函數)、
NB(Naive Bayes 樸素貝葉斯),BN(Bayesian Network/Bayesian Belief Network/ Belief Network 貝葉斯網絡/貝葉斯信度網絡/信念網絡),
LDA(Linear Discriminant Analysis/FisherLinear Discriminant 線性判別分析/Fisher線性判別),
EL(Ensemble Learning集成學習Boosting,Bagging,Stacking),
AdaBoost(Adaptive Boosting 自適應增強),
MEM(MaximumEntropy Model最大熵模型)。
Effectiveness Evaluation(分類效果評估):
Confusion Matrix(混淆矩陣),
Precision(精確度),Recall(召回率),
Accuracy(準確率),F-score(F得分),
ROC Curve(ROC曲線),AUC(AUC面積),
LiftCurve(Lift曲線) ,KS Curve(KS曲線)。
PGM(Probabilistic Graphical Models概率圖模型):
BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork 貝葉斯網絡/貝葉斯信度網絡/信念網絡),
MC(Markov Chain 馬爾科夫鏈),
HMM(HiddenMarkov Model 馬爾科夫模型),
MEMM(Maximum Entropy Markov Model 最大熵馬爾科夫模型),
CRF(ConditionalRandom Field 條件隨機場),
MRF(MarkovRandom Field 馬爾科夫隨機場)。
NN(Neural Network神經網絡):
ANN(Artificial Neural Network 人工神經網絡),
BP(Error BackPropagation 誤差反向傳播)。
Auto-encoder(自動編碼器),
SAE(Stacked Auto-encoders堆疊自動編碼器,
Sparse Auto-encoders稀疏自動編碼器、
Denoising Auto-encoders去噪自動編碼器、
Contractive Auto-encoders 收縮自動編碼器),
RBM(RestrictedBoltzmann Machine 受限玻爾茲曼機),
DBN(Deep Belief Network 深度信念網絡),
CNN(ConvolutionalNeural Network 卷積神經網絡),
Word2Vec(詞向量學習模型)。
DimensionalityReduction(降維):
LDA LinearDiscriminant Analysis/Fisher Linear Discriminant 線性判別分析/Fisher線性判別,
PCA(Principal Component Analysis 主成分分析),
ICA(IndependentComponent Analysis 獨立成分分析),
SVD(Singular Value Decomposition 奇異值分解),
FA(FactorAnalysis 因子分析法)。
Text Mining(文本挖掘):
VSM(Vector Space Model向量空間模型),
Word2Vec(詞向量學習模型),
TF(Term Frequency詞頻),
TF-IDF(Term Frequency-Inverse DocumentFrequency 詞頻-逆向文檔頻率),
MI(MutualInformation 互信息),
ECE(Expected Cross Entropy 期望交叉熵),
QEMI(二次信息熵),
IG(InformationGain 信息增益),
IGR(Information Gain Ratio 信息增益率),
Gini(基尼系數),
x2 Statistic(x2統計量),
TEW(TextEvidence Weight文本證據權),
OR(Odds Ratio 優勢率),
N-Gram Model,
LSA(Latent Semantic Analysis 潛在語義分析),
PLSA(ProbabilisticLatent Semantic Analysis 基于概率的潛在語義分析),
LDA(Latent DirichletAllocation 潛在狄利克雷模型)。
Association Mining(關聯挖掘):
FP-growth(Frequency Pattern Tree Growth 頻繁模式樹生長算法),
AprioriAll,
Spade。
Recommendation Engine(推薦引擎):
DBR(Demographic-based Recommendation 基于人口統計學的推薦),
CBR(Context-basedRecommendation 基于內容的推薦),
CF(Collaborative Filtering協同過濾),
UCF(User-basedCollaborative Filtering Recommendation 基于用戶的協同過濾推薦),
ICF(Item-basedCollaborative Filtering Recommendation 基于項目的協同過濾推薦)。
Similarity Measure&Distance Measure(相似性與距離度量):
Euclidean Distance(歐式距離),
ManhattanDistance(曼哈頓距離),
Chebyshev Distance(切比雪夫距離),
MinkowskiDistance(閔可夫斯基距離),
Standardized Euclidean Distance(標準化歐氏距離),
MahalanobisDistance(馬氏距離),
Cos(Cosine 余弦),
HammingDistance/Edit Distance(漢明距離/編輯距離),
JaccardDistance(杰卡德距離),
Correlation Coefficient Distance(相關系數距離),
InformationEntropy(信息熵),
KL(Kullback-Leibler Divergence KL散度/Relative Entropy 相對熵)。
Optimization(最優化):
Non-constrainedOptimization(無約束優化):
Cyclic VariableMethods(變量輪換法),
Pattern Search Methods(模式搜索法),
VariableSimplex Methods(可變單純形法),
Gradient Descent Methods(梯度下降法),
Newton Methods(牛頓法),
Quasi-NewtonMethods(擬牛頓法),
Conjugate Gradient Methods(共軛梯度法)。
ConstrainedOptimization(有約束優化):
Approximation Programming Methods(近似規劃法),
FeasibleDirection Methods(可行方向法),
Penalty Function Methods(罰函數法),
Multiplier Methods(乘子法)。
Heuristic Algorithm(啟發式算法),
SA(SimulatedAnnealing,
模擬退火算法),
GA(genetic algorithm遺傳算法)。
Feature Selection(特征選擇算法):
Mutual Information(互信息),
DocumentFrequence(文檔頻率),
Information Gain(信息增益),
Chi-squared Test(卡方檢驗),
Gini(基尼系數)。
Outlier Detection(異常點檢測算法):
Statistic-based(基于統計),
Distance-based(基于距離),
Density-based(基于密度),
Clustering-based(基于聚類)。
Learning to Rank(基于學習的排序):
Pointwise:McRank;
Pairwise:RankingSVM,RankNet,Frank,RankBoost;
Listwise:AdaRank,SoftRank,LamdaMART。
MPI,Hadoop生態圈,Spark,BSP,Weka,Mahout,Scikit-learn,PyBrain…
以及一些具體的業務場景與case等。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25在當今數字化時代,數據分析師的重要性與日俱增。但許多人在踏上這條職業道路時,往往充滿疑惑: 如何成為一名數據分析師?成為 ...
2025-04-24以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《劉靜:10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda ...
2025-04-23