
大數據技術架構解析
大數據數量龐大,格式多樣化。大量數據由家庭、制造工廠和辦公場所的各種設備、互聯網事務交易、社交網絡的活動、自動化傳感器、移動設備以及科研儀器等生成。它的爆炸式增長已超出了傳統IT基礎架構的處理能力,給企業和社會帶來嚴峻的數據管理問題。因此必須開發新的數據架構,圍繞“數據收集、數據管理、數據分析、知識形成、智慧行動”的全過程,開發使用這些數據,釋放出更多數據的隱藏價值。
一、大數據建設思路
1)數據的獲得
大數據產生的根本原因在于感知式系統的廣泛使用。隨著技術的發展,人們已經有能力制造極其微小的帶有處理功能的傳感器,并開始將這些設備廣泛的布置于社會的各個角落,通過這些設備來對整個社會的運轉進行監控。這些設備會源源不斷的產生新數據,這種數據的產生方式是自動的。因此在數據收集方面,要對來自網絡包括物聯網、社交網絡和機構信息系統的數據附上時空標志,去偽存真,盡可能收集異源甚至是異構的數據,必要時還可與歷史數據對照,多角度驗證數據的全面性和可信性。
2)數據的匯集和存儲
數據只有不斷流動和充分共享,才有生命力。應在各專用數據庫建設的基礎上,通過數據集成,實現各級各類信息系統的數據交換和數據共享。 數據存儲要達到低成本、低能耗、高可靠性目標,通常要用到冗余配置、分布化和云計算技術,在存儲時要按照一定規則對數據進行分類,通過過濾和去重,減少存儲量,同時加入便于日后檢索的標簽。
3)數據的管理
大數據管理的技術也層出不窮。在眾多技術中,有6種數據管理技術普遍被關注,即分布式存儲與計算、內存數據庫技術、列式數據庫技術、云數據庫、非關系型的數據庫、移動數據庫技術。其中分布式存儲與計算受關注度最高。上圖是一個圖書數據管理系統。
4)數據的分析
數據分析處理:有些行業的數據涉及上百個參數,其復雜性不僅體現在數據樣本本身,更體現在多源異構、多實體和多空間之間的交互動態性,難以用傳統的方法描述與度量,處理的復雜度很大,需要將高維圖像等多媒體數據降維后度量與處理,利用上下文關聯進行語義分析,從大量動態而且可能是模棱兩可的數據中綜合信息,并導出可理解的內容。大數據的處理類型很多,主要的處理模式可以分為流處理和批處理兩種。批處理是先存儲后處理,而流處理則是直接處理數據。挖掘的任務主要是關聯分析、聚類分析、分類、預測、時序模式和偏差分析等。
5)大數據的價值:決策支持系統
大數據的神奇之處就是數據分析師通過對過去和現在的數據進行分析,它能夠精確預測未來;通過對組織內部的和外部的數據整合,它能夠洞察事物之間的相關關系;通過對海量數據的挖掘,它能夠代替人腦,承擔起企業和社會管理的職責。
6)數據的使用
大數據有三層內涵:一是數據量巨大、來源多樣和類型多樣的數據集;二是新型的數據處理和分析技術;三是運用數據分析形成價值。大數據對科學研究、經濟建設、社會發展和文化生活等各個領域正在產生革命性的影響。大數據應用的關鍵,也是其必要條件,就在于"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。
二、大數據基本架構
基于上述大數據的特征,通過傳統IT技術存儲和處理大數據成本高昂。一個企業要大力發展大數據應用首先需要解決兩個問題:一是低成本、快速地對海量、多類別的數據進行抽取和存儲;二是使用新的技術對數據進行分析和挖掘,為企業創造價值。因此,大數據的存儲和處理與云計算技術密不可分,在當前的技術條件下,基于廉價硬件的分布式系統(如Hadoop等)被認為是最適合處理大數據的技術平臺。
Hadoop是一個分布式的基礎架構,能夠讓用戶方便高效地利用運算資源和處理海量數據,目前已在很多大型互聯網企業得到了廣泛應用,如亞馬遜、Facebook和Yahoo等。其是一個開放式的架構,架構成員也在不斷擴充完善中,通常架構如圖2所示:
Hadoop體系架構
(1)Hadoop最底層是一個HDFS(Hadoop Distributed File System,分布式文件系統),存儲在HDFS中的文件先被分成塊,然后再將這些塊復制到多個主機中(DataNode,數據節點)。
(2)Hadoop的核心是MapReduce(映射和化簡編程模型)引擎,Map意為將單個任務分解為多個,而Reduce則意為將分解后的多任務結果匯總,該引擎由JobTrackers(工作追蹤,對應命名節點)和TaskTrackers(任務追蹤,對應數據節點)組成。當處理大數據查詢時,MapReduce會將任務分解在多個節點處理,從而提高了數據處理的效率,避免了單機性能瓶頸限制。
(3)Hive是Hadoop架構中的數據倉庫,主要用于靜態的結構以及需要經常分析的工作。Hbase主要作為面向列的數據庫運行在HDFS上,可存儲PB級的數據。Hbase利用MapReduce來處理內部的海量數據,并能在海量數據中定位所需的數據且訪問它。
(4)Sqoop是為數據的互操作性而設計,可以從關系數據庫導入數據到Hadoop,并能直接導入到HDFS或Hive。
(5)Zookeeper在Hadoop架構中負責應用程序的協調工作,以保持Hadoop集群內的同步工作。
(6)Thrift是一個軟件框架,用來進行可擴展且跨語言的服務的開發,最初由Facebook開發,是構建在各種編程語言間無縫結合的、高效的服務。
Hadoop核心設計
Hbase——分布式數據存儲系統
Client:使用HBase RPC機制與HMaster和HRegionServer進行通信
Zookeeper:協同服務管理,HMaster通過Zookeepe可以隨時感知各個HRegionServer的健康狀況
HMaster: 管理用戶對表的增刪改查操作
HRegionServer:HBase中最核心的模塊,主要負責響應用戶I/O請求,向HDFS文件系統中讀寫數據
HRegion:Hbase中分布式存儲的最小單元,可以理解成一個Table
HStore:HBase存儲的核心。由MemStore和StoreFile組成。
HLog:每次用戶操作寫入Memstore的同時,也會寫一份數據到HLog文件
結合上述Hadoop架構功能,大數據平臺系統功能建議如圖所示:
應用系統:對于大多數企業而言,運營領域的應用是大數據最核心的應用,之前企業主要使用來自生產經營中的各種報表數據,但隨著大數據時代的到來,來自于互聯網、物聯網、數據分析各種傳感器的海量數據撲面而至。于是,一些企業開始挖掘和利用這些數據,來推動運營效率的提升。
數據平臺:借助大數據平臺,未來的互聯網絡將可以讓商家更了解消費者的使用習慣,從而改進使用體驗?;诖髷祿A上的相應分析,能夠更有針對性的改進用戶體驗,同時挖掘新的商業機會。
數據源:數據源是指數據庫應用程序所使用的數據庫或者數據庫服務器。豐富的數據源是大數據產業發展的前提。數據源在不斷拓展,越來越多樣化。如:智能汽車可以把動態行駛過程變成數據,嵌入到生產設備里的物聯網可以把生產過程和設備動態狀況變成數據。對數據源的不斷拓展不僅能帶來采集設備的發展,而且可以通過控制新的數據源更好地控制數據的價值。然而我國數字化的數據資源總量遠遠低于美歐,就已有有限的數據資源來說,還存在標準化、準確性、完整性低,利用價值不高的情況,這大大降低了數據的價值。
三、大數據的目標效果
通過大數據的引入和部署,可以達到如下效果:
1)數據整合
統一數據模型:承載企業數據模型,促進企業各域數據邏輯模型的統一;
統一數據標準:統一建立標準的數據編碼目錄,實現企業數據的標準化與統一存儲;
統一數據視圖:實現統一數據視圖,使企業在客戶、產品和資源等視角獲取到一致的信息。
2)數據質量管控
數據質量校驗:根據規則對所存儲的數據進行一致性、完整性和準確性的校驗,保證數據的一致性、完整性和準確性;
數據質量管控:通過建立企業數據的質量標準、數據管控的組織、數據管控的流程,對數據質量進行統一管控,以達到數據質量逐步完善。
3)數據共享
消除網狀接口,建立大數據共享中心,為各業務系統提供共享數據,降低接口復雜度,提高系統間接口效率與質量;
以實時或準實時的方式將整合或計算好的數據向外系統提供。
4)數據應用
查詢應用:平臺實現條件不固定、不可預見、格式靈活的按需查詢功能;
固定報表應用:視統計維度和指標固定的分析結果的展示,可根據業務系統的需求,分析產生各種業務報表數據等;
動態分析應用:按關心的維度和指標對數據進行主題性的分析,動態分析應用中維度和指標不固定。
四、總結
基于分布式技術構建的大數據平臺能夠有效降低數據存儲成本,提升數據分析處理效率,并具備海量數據、高并發場景的支撐能力,可大幅縮短數據查詢響應時間,滿足企業各上層應用的數據需求。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25在當今數字化時代,數據分析師的重要性與日俱增。但許多人在踏上這條職業道路時,往往充滿疑惑: 如何成為一名數據分析師?成為 ...
2025-04-24以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《劉靜:10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda ...
2025-04-23