
啟動時間用同一臺設備,同一個包進行啟動時間的測試,其中三組樣本數據(每組100份對比數據)如下:
base_list_1 = [0.944, 0.901, 0.957, 0.911, 1.189, 0.93, 0.94, 0.932, 0.951, 0.911, 0.934, 0.903, 0.922, 0.917, 0.931, 0.962, 0.945, 1.254, 0.918, 0.913, 0.931, 0.935, 0.89, 0.948, 0.932, 0.931, 0.875, 0.96, 1.117, 0.905, 0.955, 0.914, 0.95, 0.933, 0.941, 0.905, 0.919, 1.124, 0.953, 0.918, 0.942, 0.918, 0.914, 0.907, 0.942, 0.907, 0.895, 0.917, 0.927, 0.908, 0.915, 0.914, 0.945, 0.933, 0.894, 0.958, 0.885, 0.971, 0.94, 1.261, 0.949, 0.922, 1.009, 0.941, 0.942, 0.907, 0.913, 0.874, 0.963, 0.951, 0.972, 0.94, 0.952, 0.941, 0.954, 0.914, 0.951, 0.899, 0.908, 0.945, 0.934, 0.922, 0.92, 0.959, 0.946, 0.892, 0.847, 0.96, 0.973, 0.928, 0.913, 0.935, 0.939, 0.967, 0.907, 0.94, 0.927, 0.88, 1.004, 0.986] cmp_list_1 = [0.931, 0.947, 0.965, 0.912, 0.966, 0.974, 0.97, 0.971, 0.958, 0.938, 0.949, 0.972, 0.946, 0.915, 0.906, 0.926, 0.955, 0.93, 0.931, 0.979, 0.952, 1.062, 0.921, 1.002, 0.927, 0.942, 0.991, 0.898, 1.121, 1.006, 0.941, 0.953, 1.013, 0.979, 0.997, 0.961, 0.947, 0.96, 0.966, 0.917, 1.002, 0.955, 0.946, 0.99, 0.945, 0.911, 0.923, 0.94, 0.933, 0.954, 0.907, 0.961, 0.937, 0.941, 0.897, 0.954, 0.979, 0.927, 0.957, 0.944, 0.961, 0.924, 0.953, 0.954, 0.929, 0.926, 0.965, 0.95, 0.964, 0.895, 0.921, 0.945, 0.955, 0.96, 0.962, 0.907, 0.933, 0.955, 0.921, 0.959, 0.934, 0.973, 0.977, 0.938, 0.945, 0.949, 0.932, 0.976, 0.947, 0.941, 0.898, 0.942, 0.887, 0.963, 0.931, 0.999, 0.915, 0.947, 0.958, 0.988]
base_list_2 = [0.887, 0.926, 0.931, 0.918, 0.905, 0.896, 0.889, 0.922, 0.923, 0.919, 0.927, 0.904, 0.927, 1.039, 0.933, 1.209, 0.935, 0.882, 0.947, 0.914, 0.871, 0.924, 0.922, 0.943, 0.902, 0.938, 0.896, 0.906, 0.939, 0.899, 0.934, 0.923, 0.927, 0.911, 0.943, 0.886, 0.844, 0.913, 0.907, 0.954, 0.934, 0.854, 0.953, 0.903, 0.931, 0.838, 0.936, 0.955, 0.943, 0.933, 0.901, 1.18, 0.907, 0.883, 0.885, 0.909, 0.94, 0.939, 0.889, 0.917, 0.933, 0.904, 0.888, 0.953, 0.936, 0.947, 0.927, 0.881, 0.914, 0.937, 0.898, 0.914, 0.929, 0.945, 0.935, 0.902, 0.939, 0.925, 0.909, 0.903, 0.92, 0.917, 0.987, 0.911, 0.889, 0.888, 0.91, 0.941, 0.904, 0.911, 0.908, 0.793, 1.113, 0.947, 0.876, 0.908, 0.91, 0.921, 0.941, 0.987] cmp_list_1 = [0.929, 0.94, 0.931, 0.978, 0.965, 0.938, 0.941, 0.937, 0.91, 0.92, 0.934, 0.92, 0.981, 0.939, 0.928, 0.95, 0.94, 0.928, 0.925, 0.933, 0.963, 0.954, 0.987, 0.965, 0.96, 0.94, 0.966, 0.96, 0.942, 0.969, 0.978, 0.964, 0.921, 0.964, 0.939, 0.97, 0.961, 0.945, 1.004, 0.951, 0.916, 0.942, 0.955, 0.975, 0.947, 0.917, 0.944, 0.943, 0.905, 0.955, 0.96, 0.994, 0.925, 0.922, 0.958, 0.957, 0.958, 0.907, 0.981, 0.937, 0.959, 0.919, 0.959, 0.932, 0.951, 0.927, 0.949, 0.949, 0.944, 0.913, 0.967, 0.981, 0.942, 0.949, 0.932, 0.933, 0.97, 0.931, 0.918, 0.972, 0.95, 0.962, 0.988, 1.0, 1.003, 0.949, 0.933, 0.955, 0.934, 0.952, 0.937, 0.977, 0.936, 0.991, 0.986, 0.943, 0.997, 0.975, 0.991, 0.984]
base_list_1 = [1.359, 1.415, 1.395, 1.318, 1.345, 1.417, 1.36, 1.373, 1.337, 1.332, 1.498, 1.318, 1.392, 1.364, 1.397, 1.793, 1.341, 1.364, 1.428, 1.345, 1.418, 1.364, 1.372, 1.541, 1.465, 1.373, 1.337, 1.52, 1.375, 1.367, 1.366, 1.347, 1.334, 1.422, 1.354, 1.369, 1.413, 1.345, 1.373, 1.363, 1.464, 1.344, 1.324, 1.331, 1.405, 1.355, 1.674, 1.38, 1.352, 1.339, 1.326, 1.362, 1.431, 1.774, 1.312, 1.292, 1.384, 1.473, 1.337, 1.406, 1.412, 1.385, 1.292, 1.384, 1.342, 1.333, 1.435, 1.372, 1.42, 1.315, 1.344, 1.414, 1.51, 1.334, 1.308, 1.468, 1.401, 1.316, 1.373, 1.407, 1.474, 1.382, 1.346, 1.373, 1.366, 1.378, 1.315, 1.417, 1.431, 1.379, 1.324, 1.383, 1.349, 1.4, 1.327, 1.734, 1.395, 1.412, 1.438, 1.384] cmp_list_1 = [1.414, 1.326, 1.421, 1.371, 1.363, 1.36, 1.417, 1.34, 1.357, 1.429, 1.308, 1.324, 1.351, 1.323, 1.367, 1.412, 1.391, 1.661, 1.34, 1.38, 1.528, 1.417, 1.352, 1.569, 1.32, 1.473, 1.531, 1.445, 1.407, 1.529, 1.356, 1.349, 1.362, 1.358, 1.375, 1.365, 1.317, 1.302, 1.342, 1.351, 1.393, 1.473, 1.392, 1.299, 1.367, 1.381, 1.354, 1.374, 1.551, 1.448, 1.387, 1.361, 1.358, 1.362, 1.568, 1.343, 1.334, 1.378, 1.417, 1.382, 1.421, 1.345, 1.336, 1.302, 1.349, 1.381, 1.374, 1.359, 1.38, 1.553, 1.34, 1.269, 1.353, 1.329, 1.649, 1.392, 1.367, 1.377, 1.403, 1.361, 1.352, 1.466, 1.389, 1.346, 1.345, 1.35, 1.383, 1.446, 1.613, 1.395, 1.402, 1.394, 1.348, 1.353, 1.395, 1.345, 1.274, 1.425, 1.351, 1.586]
進行正態性檢驗的目的是為了驗證我們的測試數據樣本是不是符合正態分布(近似),而且下面的統計學利用是需要在正態分布下進行的,因此,進行正態性檢驗是必備的。下列圖對應的是區域內的頻數統計
因為是同一臺設備的同一個場景,因此可知左右兩邊的分布應該是近似一致的。通過觀察Q-Q圖與Q-Q去勢圖可以斷定,我們的啟動時間是符合正態分布的。但需要注意的是,base_list_2跟cmp_list_2的分布,方差明顯差很多,可以看出數據分布更加零散(基本可以斷定第二組數據是不能拿來作為對比的),而其他幾組幾乎是同形狀的分布。
方差齊性檢驗的目的是為了檢驗兩組數據兩兩對比的差異,從而判斷兩組數據的數據來源分布是否一致。能否通過方差齊性檢驗,是我們能否采用這組數據作為對比數據的前提標準。
判斷腳本如下
#coding:utf-8 import MySQLdb import json import numpy as np from scipy.stats import levene import threading import matplotlib.pyplot as plt import matplotlib.mlab as mlab class DBOperate(object): def __init__(self, host, user, db, passwd, port): self.host = host self.user = user self.db = db self.passwd = passwd self.port = port self.conn = MySQLdb.connect( host = self.host, user = self.user, passwd = self.passwd, db = self.db, port = self.port) self.cur = self.conn.cursor() def execute(self,sql): try: self.cur.execute(sql) self.conn.commit() print "======sql執行成功: ",sql except Exception as e: print e def getData(self,sql): try: self.cur.execute(sql) result = self.cur.fetchall() return result except Exception as e: print e def close(self): self.cur.close() self.conn.close() class MathTools(object): def __init__(self,base_data,cmp_data): self.base_data = base_data self.cmp_data = cmp_data def testVar(self): '''方差齊性檢驗 ''' result = levene(self.base_data,self.cmp_data) print result if float(result[1]) > 0.05: print "方差齊性檢驗通過,可以認為方差相等(說明硬件或者執行時間不同可能帶來的誤差可以忽略)!" def getMeanAndVar(self): '''獲取樣本均值跟方差 ''' for each in [self.base_data,self.cmp_data]: mean = np.mean(each) var = np.var(each) std = np.std(each) print "===================" print "均值:",mean print "方差:",var print "標準差:",std print "===================" return mean,var,std def drawPlot(avg,std): x = np.linspace(0.5,1.5,10000) plt.plot(x,mlab.normpdf(x,avg,std)) plt.show() def dataAnalysis(tuple_data): avg_list = [] for each_tuple in tuple_data: str_data = each_tuple[0] dic_data = json.loads(str_data) avg_time = float(dic_data['intervalStartTime']) avg_list.append(avg_time) return avg_list def outputData(dboperate,task_id_1,task_id_2): data_base = dboperate.getData('''SELECT start_time_log from uctc_qms_start_time WHERE task_id=%s'''%task_id_1) data_cmp = dboperate.getData('''SELECT start_time_log from uctc_qms_start_time WHERE task_id=%s'''%task_id_2) base_list = dataAnalysis(data_base) cmp_list = dataAnalysis(data_cmp) return base_list,cmp_list def main(): dboperate = DBOperate( host="xxxx", user="xxxx", passwd="xxxx", db="xxxx", port=3306) base_list_1,cmp_list_1 = outputData(dboperate,216674,216675) print "base_list_1:\n",base_list_1 print "cmp_list_1:\n",cmp_list_1 mt = MathTools(base_list_1,cmp_list_1) mt.testVar() avg_list = mt.getMeanAndVar() base_list_2,cmp_list_2 = outputData(dboperate,216679,216680) print "base_list_2:\n",base_list_2 print "cmp_list_2:\n",cmp_list_2 mt2 = MathTools(base_list_2,cmp_list_2) mt2.testVar() mt2.getMeanAndVar() base_list_3,cmp_list_3 = outputData(dboperate,216677,216682) print "base_list_1:\n",base_list_3 print "cmp_list_1:\n",cmp_list_3 mt3 = MathTools(base_list_3,cmp_list_3) mt3.testVar() mt3.getMeanAndVar() dboperate.close() if __name__ == '__main__': main()
分別對三組數據做方差齊性檢驗發現第二組數據沒有通過方差齊性檢驗,第二組數據中base_list_2跟cmp_list_2存在顯著性差異,由于我們的測試是用了同一設備的同一個包進行同一種測試,因此可以斷定第二組數據必須過濾掉。
base_list_1: [0.944, 0.901, 0.957, 0.911, 1.189, 0.93, 0.94, 0.932, 0.951, 0.911, 0.934, 0.903, 0.922, 0.917, 0.931, 0.962, 0.945, 1.254, 0.918, 0.913, 0.931, 0.935, 0.89, 0.948, 0.932, 0.931, 0.875, 0.96, 1.117, 0.905, 0.955, 0.914, 0.95, 0.933, 0.941, 0.905, 0.919, 1.124, 0.953, 0.918, 0.942, 0.918, 0.914, 0.907, 0.942, 0.907, 0.895, 0.917, 0.927, 0.908, 0.915, 0.914, 0.945, 0.933, 0.894, 0.958, 0.885, 0.971, 0.94, 1.261, 0.949, 0.922, 1.009, 0.941, 0.942, 0.907, 0.913, 0.874, 0.963, 0.951, 0.972, 0.94, 0.952, 0.941, 0.954, 0.914, 0.951, 0.899, 0.908, 0.945, 0.934, 0.922, 0.92, 0.959, 0.946, 0.892, 0.847, 0.96, 0.973, 0.928, 0.913, 0.935, 0.939, 0.967, 0.907, 0.94, 0.927, 0.88, 1.004, 0.986] cmp_list_1: [0.931, 0.947, 0.965, 0.912, 0.966, 0.974, 0.97, 0.971, 0.958, 0.938, 0.949, 0.972, 0.946, 0.915, 0.906, 0.926, 0.955, 0.93, 0.931, 0.979, 0.952, 1.062, 0.921, 1.002, 0.927, 0.942, 0.991, 0.898, 1.121, 1.006, 0.941, 0.953, 1.013, 0.979, 0.997, 0.961, 0.947, 0.96, 0.966, 0.917, 1.002, 0.955, 0.946, 0.99, 0.945, 0.911, 0.923, 0.94, 0.933, 0.954, 0.907, 0.961, 0.937, 0.941, 0.897, 0.954, 0.979, 0.927, 0.957, 0.944, 0.961, 0.924, 0.953, 0.954, 0.929, 0.926, 0.965, 0.95, 0.964, 0.895, 0.921, 0.945, 0.955, 0.96, 0.962, 0.907, 0.933, 0.955, 0.921, 0.959, 0.934, 0.973, 0.977, 0.938, 0.945, 0.949, 0.932, 0.976, 0.947, 0.941, 0.898, 0.942, 0.887, 0.963, 0.931, 0.999, 0.915, 0.947, 0.958, 0.988] (2.585452271112739, 0.10944298973519527) 方差齊性檢驗通過,可以認為方差相等(說明硬件或者執行時間不同可能帶來的誤差可以忽略)! =================== 均值: 0.9432 方差: 0.00405766 標準差: 0.0636997645208 =================== =================== 均值: 0.95079 方差: 0.0011006859 標準差: 0.0331765866237 =================== base_list_2: [0.887, 0.926, 0.931, 0.918, 0.905, 0.896, 0.889, 0.922, 0.923, 0.919, 0.927, 0.904, 0.927, 1.039, 0.933, 1.209, 0.935, 0.882, 0.947, 0.914, 0.871, 0.924, 0.922, 0.943, 0.902, 0.938, 0.896, 0.906, 0.939, 0.899, 0.934, 0.923, 0.927, 0.911, 0.943, 0.886, 0.844, 0.913, 0.907, 0.954, 0.934, 0.854, 0.953, 0.903, 0.931, 0.838, 0.936, 0.955, 0.943, 0.933, 0.901, 1.18, 0.907, 0.883, 0.885, 0.909, 0.94, 0.939, 0.889, 0.917, 0.933, 0.904, 0.888, 0.953, 0.936, 0.947, 0.927, 0.881, 0.914, 0.937, 0.898, 0.914, 0.929, 0.945, 0.935, 0.902, 0.939, 0.925, 0.909, 0.903, 0.92, 0.917, 0.987, 0.911, 0.889, 0.888, 0.91, 0.941, 0.904, 0.911, 0.908, 0.793, 1.113, 0.947, 0.876, 0.908, 0.91, 0.921, 0.941, 0.987] cmp_list_2: [0.929, 0.94, 0.931, 0.978, 0.965, 0.938, 0.941, 0.937, 0.91, 0.92, 0.934, 0.92, 0.981, 0.939, 0.928, 0.95, 0.94, 0.928, 0.925, 0.933, 0.963, 0.954, 0.987, 0.965, 0.96, 0.94, 0.966, 0.96, 0.942, 0.969, 0.978, 0.964, 0.921, 0.964, 0.939, 0.97, 0.961, 0.945, 1.004, 0.951, 0.916, 0.942, 0.955, 0.975, 0.947, 0.917, 0.944, 0.943, 0.905, 0.955, 0.96, 0.994, 0.925, 0.922, 0.958, 0.957, 0.958, 0.907, 0.981, 0.937, 0.959, 0.919, 0.959, 0.932, 0.951, 0.927, 0.949, 0.949, 0.944, 0.913, 0.967, 0.981, 0.942, 0.949, 0.932, 0.933, 0.97, 0.931, 0.918, 0.972, 0.95, 0.962, 0.988, 1.0, 1.003, 0.949, 0.933, 0.955, 0.934, 0.952, 0.937, 0.977, 0.936, 0.991, 0.986, 0.943, 0.997, 0.975, 0.991, 0.984] (4.5987224867656273, 0.0332145312054625) =================== 均值: 0.92446 方差: 0.0028034084 標準差: 0.0529472227789 =================== =================== 均值: 0.95108 方差: 0.0005381736 標準差: 0.0231985689214 =================== base_list_3: [1.359, 1.415, 1.395, 1.318, 1.345, 1.417, 1.36, 1.373, 1.337, 1.332, 1.498, 1.318, 1.392, 1.364, 1.397, 1.793, 1.341, 1.364, 1.428, 1.345, 1.418, 1.364, 1.372, 1.541, 1.465, 1.373, 1.337, 1.52, 1.375, 1.367, 1.366, 1.347, 1.334, 1.422, 1.354, 1.369, 1.413, 1.345, 1.373, 1.363, 1.464, 1.344, 1.324, 1.331, 1.405, 1.355, 1.674, 1.38, 1.352, 1.339, 1.326, 1.362, 1.431, 1.774, 1.312, 1.292, 1.384, 1.473, 1.337, 1.406, 1.412, 1.385, 1.292, 1.384, 1.342, 1.333, 1.435, 1.372, 1.42, 1.315, 1.344, 1.414, 1.51, 1.334, 1.308, 1.468, 1.401, 1.316, 1.373, 1.407, 1.474, 1.382, 1.346, 1.373, 1.366, 1.378, 1.315, 1.417, 1.431, 1.379, 1.324, 1.383, 1.349, 1.4, 1.327, 1.734, 1.395, 1.412, 1.438, 1.384] cmp_list_3: [1.414, 1.326, 1.421, 1.371, 1.363, 1.36, 1.417, 1.34, 1.357, 1.429, 1.308, 1.324, 1.351, 1.323, 1.367, 1.412, 1.391, 1.661, 1.34, 1.38, 1.528, 1.417, 1.352, 1.569, 1.32, 1.473, 1.531, 1.445, 1.407, 1.529, 1.356, 1.349, 1.362, 1.358, 1.375, 1.365, 1.317, 1.302, 1.342, 1.351, 1.393, 1.473, 1.392, 1.299, 1.367, 1.381, 1.354, 1.374, 1.551, 1.448, 1.387, 1.361, 1.358, 1.362, 1.568, 1.343, 1.334, 1.378, 1.417, 1.382, 1.421, 1.345, 1.336, 1.302, 1.349, 1.381, 1.374, 1.359, 1.38, 1.553, 1.34, 1.269, 1.353, 1.329, 1.649, 1.392, 1.367, 1.377, 1.403, 1.361, 1.352, 1.466, 1.389, 1.346, 1.345, 1.35, 1.383, 1.446, 1.613, 1.395, 1.402, 1.394, 1.348, 1.353, 1.395, 1.345, 1.274, 1.425, 1.351, 1.586] (0.0077692351582683648, 0.92985189389348166) 方差齊性檢驗通過,可以認為方差相等(說明硬件或者執行時間不同可能帶來的誤差可以忽略)! =================== 均值: 1.39346 方差: 0.0075982484 標準差: 0.0871679321769 =================== =================== 均值: 1.39223 方差: 0.0058431971 標準差: 0.0764408078189 ===================
如果均值的誤差重疊,則認為軟件迭代對性能沒有影響。顯著性檢驗是為了檢查兩組樣本有沒有顯著性差異,通過校驗可以說明這兩組數據的可信度。
其實T檢驗更適合服從正態分布的小樣本判斷,大樣本應采用z檢驗。但由于我對小樣本跟大樣本都有對應測試,得到了同樣的結論(ps:具體t值不同),故這里暫時先用原來的大樣本來處理。
顯著性檢驗腳本:
#!/usr/bin/python import string import math import sys from scipy.stats import t import matplotlib.pyplot as plt import numpy as np ############## # Parameters # ############## ver = 1 verbose = 0 alpha = 0.05 def usage(): print """ usage: ./program data_file(one sample in one line) """ def main(): sample1 = [1.15, 1.119, 1.098, 1.147, 1.092, 1.131, 1.17, 1.138, 1.115, 1.143, 1.126, 1.182, 1.124, 1.145, 1.093, 1.131, 1.102, 1.191, 1.093, 1.089, 1.115, 1.128, 1.119, 1.163, 1.143, 1.114, 1.098, 1.142, 1.126, 1.213, 1.279, 1.125, 1.174, 1.103, 1.13, 1.089, 1.164, 1.106, 1.155, 1.085, 1.186, 1.155, 1.207, 1.081, 1.122, 1.112, 1.137, 1.096, 1.078, 1.122, 1.11, 1.095, 1.132, 1.134, 1.118, 1.117, 1.116, 1.116, 1.108, 1.14, 1.099, 1.124, 1.113, 1.203, 1.135, 1.124, 1.098, 1.105, 1.082, 1.107, 1.155, 1.164, 1.096, 1.175, 1.17, 1.161, 1.093, 1.152, 1.085, 0.969, 1.068, 0.95, 1.077, 0.999, 1.147, 1.144, 1.097, 1.119, 1.126, 1.148, 1.083, 1.106, 1.107, 1.094, 1.121, 1.136, 1.086, 1.141, 1.119, 1.153] sample2 = [1.154, 1.094, 1.131, 1.087, 1.148, 1.046, 1.228, 1.142, 0.931, 1.063, 1.12, 1.08, 1.129, 1.073, 1.116, 1.081, 1.177, 1.081, 1.133, 1.093, 1.13, 1.085, 1.125, 1.062, 1.133, 1.062, 0.927, 1.055, 1.202, 1.162, 1.102, 1.098, 1.126, 1.144, 1.088, 1.131, 1.105, 1.094, 1.099, 1.112, 1.158, 1.181, 1.107, 0.937, 1.082, 1.1, 1.06, 1.114, 1.088, 1.141, 1.085, 1.232, 1.131, 1.155, 1.069, 1.149, 1.088, 1.125, 1.074, 1.13, 1.053, 1.102, 1.128, 1.166, 1.101, 1.192, 1.073, 1.131, 1.057, 1.098, 1.077, 1.119, 1.084, 1.164, 1.114, 1.148, 1.063, 1.113, 1.084, 1.063, 1.05, 1.078, 1.112, 1.181, 1.109, 1.087, 1.075, 1.078, 1.109, 1.081, 1.104, 1.059, 1.099, 1.142, 1.084, 1.084, 1.09, 1.089, 1.14, 1.105] sample_len = len(sample1) sample_diff = [] for i in range(sample_len): sample_diff.append(sample1[i] - sample2[i]) if (verbose): print("sample_diff = ", sample_diff) ###################### # Hypothesis testing # ###################### sample = sample_diff numargs = t.numargs [ df ] = [sample_len - 1,] * numargs if (verbose): print("df(degree of freedom, student's t distribution parameter) = ", df) sample_mean = np.mean(sample) sample_std = np.std(sample, dtype=np.float64, ddof=1) if (verbose): print("mean = %f, std = %f" % (sample_mean, sample_std)) abs_t = math.fabs( sample_mean / (sample_std / math.sqrt(sample_len)) ) if (verbose): print("t = ", abs_t) t_alpha_percentile = t.ppf(1 - alpha / 2, df) if (verbose): print("abs_t = ", abs_t) print("t_alpha_percentile = ", t_alpha_percentile) if (abs_t >= t_alpha_percentile): print "REJECT the null hypothesis" else: print "ACCEPT the null hypothesis" ######## # Plot # ######## rv = t(df) limit = np.minimum(rv.dist.b, 5) x = np.linspace(-1 * limit, limit) h = plt.plot(x, rv.pdf(x)) plt.xlabel('x') plt.ylabel('t(x)') plt.title('Difference significance test') plt.grid(True) plt.axvline(x = t_alpha_percentile, ymin = 0, ymax = 0.095, linewidth=2, color='r') plt.axvline(x = abs_t, ymin = 0, ymax = 0.6, linewidth=2, color='g') plt.annotate(r'(1 - $\alpha$ / 2) percentile', xy = (t_alpha_percentile, 0.05), xytext=(t_alpha_percentile + 0.5, 0.09), arrowprops=dict(facecolor = 'black', shrink = 0.05),) plt.annotate('t value', xy = (abs_t, 0.26), xytext=(abs_t + 0.5, 0.30), arrowprops=dict(facecolor = 'black', shrink = 0.05),) leg = plt.legend(('Student\'s t distribution', r'(1 - $\alpha$ / 2) percentile', 't value'), 'upper left', shadow = True) frame = leg.get_frame() frame.set_facecolor('0.80') for i in leg.get_texts(): i.set_fontsize('small') for l in leg.get_lines(): l.set_linewidth(1.5) normalized_sample = [0] * sample_len for i in range(0, sample_len): normalized_sample[i] = (sample[i] - sample_mean) / (sample_std / math.sqrt(sample_len)) plt.plot(normalized_sample, [0] * len(normalized_sample), 'ro') plt.show() if __name__ == "__main__": main()
輪流替換sample里的值。為了保證結果是可行的,先用numpy生成了兩組服從標準正態分布的測試數據來說明。
檢驗結果如下:
輸出為:ACCEPT the null hypothesis。
意思是這兩組數據沒有顯著性差異(均值)
另外對我們云測設備的數據進行測試。
輸出:REJECT the null hypothesis(代表我們數據存在顯著性差異)
2.第二組測試:
輸出:REJECT the null hypothesis(代表我們數據存在顯著性差異)
3.第三組測試:
輸出:ACCEPT the null hypothesis(代表我們的數據沒有顯著性差異)
1.通過正態性檢驗-方差齊性檢驗-t檢驗后,真正能用的數據就只剩下第三組。
base_list_3: [1.359, 1.415, 1.395, 1.318, 1.345, 1.417, 1.36, 1.373, 1.337, 1.332, 1.498, 1.318, 1.392, 1.364, 1.397, 1.793, 1.341, 1.364, 1.428, 1.345, 1.418, 1.364, 1.372, 1.541, 1.465, 1.373, 1.337, 1.52, 1.375, 1.367, 1.366, 1.347, 1.334, 1.422, 1.354, 1.369, 1.413, 1.345, 1.373, 1.363, 1.464, 1.344, 1.324, 1.331, 1.405, 1.355, 1.674, 1.38, 1.352, 1.339, 1.326, 1.362, 1.431, 1.774, 1.312, 1.292, 1.384, 1.473, 1.337, 1.406, 1.412, 1.385, 1.292, 1.384, 1.342, 1.333, 1.435, 1.372, 1.42, 1.315, 1.344, 1.414, 1.51, 1.334, 1.308, 1.468, 1.401, 1.316, 1.373, 1.407, 1.474, 1.382, 1.346, 1.373, 1.366, 1.378, 1.315, 1.417, 1.431, 1.379, 1.324, 1.383, 1.349, 1.4, 1.327, 1.734, 1.395, 1.412, 1.438, 1.384] cmp_list_3: [1.414, 1.326, 1.421, 1.371, 1.363, 1.36, 1.417, 1.34, 1.357, 1.429, 1.308, 1.324, 1.351, 1.323, 1.367, 1.412, 1.391, 1.661, 1.34, 1.38, 1.528, 1.417, 1.352, 1.569, 1.32, 1.473, 1.531, 1.445, 1.407, 1.529, 1.356, 1.349, 1.362, 1.358, 1.375, 1.365, 1.317, 1.302, 1.342, 1.351, 1.393, 1.473, 1.392, 1.299, 1.367, 1.381, 1.354, 1.374, 1.551, 1.448, 1.387, 1.361, 1.358, 1.362, 1.568, 1.343, 1.334, 1.378, 1.417, 1.382, 1.421, 1.345, 1.336, 1.302, 1.349, 1.381, 1.374, 1.359, 1.38, 1.553, 1.34, 1.269, 1.353, 1.329, 1.649, 1.392, 1.367, 1.377, 1.403, 1.361, 1.352, 1.466, 1.389, 1.346, 1.345, 1.35, 1.383, 1.446, 1.613, 1.395, 1.402, 1.394, 1.348, 1.353, 1.395, 1.345, 1.274, 1.425, 1.351, 1.586] (0.0077692351582683648, 0.92985189389348166) 方差齊性檢驗通過,可以認為方差相等(說明硬件或者執行時間不同可能帶來的誤差可以忽略)! =================== 均值: 1.39346 方差: 0.0075982484 標準差: 0.0871679321769 =================== =================== 均值: 1.39223 方差: 0.0058431971 標準差: 0.0764408078189 ===================
可以看到這兩組數據的均值跟方差均比較接近,也是比較符合我們經驗結果的測試數據。
(1).三組測試數據失敗兩組,足以說明我們的測試很不穩定。(需要找目前測試不穩定的原因,主要是目前引入的變量)
(2).兩組樣本通過方差齊性檢驗,說明我們不需要引入新的測試變量,如cpu,內存變化,以及硬件等對啟動時間的影響。
(3).通過控制t分布的置信區間,可以動態調整對應的數據均值范圍。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25