
利用SPSS進行數據分析的基本步驟
大家都知道數據分析的基本流程為明確分析的目的和內容——數據收集——數據處理——數據分析——數據展現——報告撰寫,今天這里所要說的是如何利用SPSS進行數據分析,也就是整個數據分析流程的中間部分(是指從將數據導入SPSS工具到利用SPSS工具產生分析結果,對結果進行整理,形成圖表并解讀分析的過程)。
利用SPSS等工具進行統計分析時,需要經過數據準備、數據轉換、數據分析和數據展現這樣四個階段,下面中國統計網將對這幾個階段一一講述:
(一) 數據準備
FAQ:這里為什么用數據準備而不用數據采集?
數據采集是一個非常繁雜漫長的過程,數據采集來源、采集頻率、采集人員安排等等這些足夠寫一篇文章,同時這里所要談的這個過程是從數據開始說起的,至于這些數據如何而來,這里不作討論。
數據準備過程主要包括兩部分內容:SPSS數據文件的建立和變量編輯。在SPSS數據文件建立之前,我們需要分析的數據可能以各種各樣的形態存在,可能需要手動錄入(小批量的數據,但通常數據的錄入不在SPSS中直接進行),也可能是以其他格式形態存在,例如:.xls/.xlsx/.xlsm格式,.txt文本格式或.CSV格式,SPSS支持多種數據格式文件的導入。
除此之外,SPSS還可以直接從數據庫中導入數據,利用數據庫導入方式導入數據。這里需要注意的是,SPSS每執行一條指令,都會重新讀取所需的數據,如果你所取的數據是利用SQL語句從遠程數據庫中調用的數據文件,那么將會非常耗時,此時的小技巧是利用好Cache data功能,建立活動的數據緩存區,那樣SPSS的運算速度會提升很多。
SPSS數據文件成功建立后,接下來的準備工作則是對變量屬性進行適當的調整和完善。例如你從公司的網站后臺提取銷售數據,后臺數據庫為了記錄方便通常是將各種渠道銷售數據用數字代碼表示,而將這些數據成功的建成SPSS數據文件后,此時你需要對渠道代碼進行編碼說明,對缺失值進行標記等等。
(二) 數據清洗
此過程主要為下一步數據分析做進一步的準備,最終將數據清洗為滿足分析需求的具體數據集。期間主要內容包括:
1)數據集的預先分析:對數據進行必要的分析,如數據分組、排序、分布圖、平均數、標準差描述等,以掌握數據的基本特點和基本情況,保證后續工作的有效性,也為確定應采用的統計檢驗方法提供依據
2) 相關變量缺失值的查補檢查
3)分析前相關的校正和轉換工作,如根據銷售額對觀測值進行分類,形成新的分類變量,從對應的身份證信息中提取出地區、年齡、性別等新的變量信息等
4)觀測值的抽樣篩選,如抽取銷售額大于10萬的產品等
5)其他數據清洗工作
Tips:期間注意規劃好清洗步驟和數據備份工作。
(三) 數據分析
此階段主要根據需求,選擇合適的統計方法進行統計分析和數據圖表的制作,這里選擇合適的方法是關鍵,相關操作SPSS軟件已經標準流程化,我們只需要選擇合適的參數進行相關操作即可。下表是根據自變量與因變量數目對各種統計方法的一個歸類:
除了上述方法外,SPSS 17.0以上的版本還提供了一個直銷模塊,這部分內容是對市場營銷活動中的用的比較多的模型的整理濃縮,本貼暫時不對數據分析的相關內容做深入詳細的介紹,以后將針對案例對這部分內容進行詳細敘述。
(四) 數據展現
常常聽到有人抱怨SPSS輸出的圖表太丑,修改編輯起來太麻煩,真的是這樣嗎?其實SPSS軟件有提供很多的圖表供大家選擇,太多的時候,我們所使用的只是其中的一種而已。除此之外,SPSS也提供自己定義圖表模版功能供我們自由操作。
SPSS的菜單操作通常會輸出很多多余的結果,對這些結果進行有針對性的挑選和組合才是工作的重點,而不是一味的將所有分析結果一股腦的全搬到報告中去,在寫報告前對這些結果進行合理的簡化和整合是必須的,與此同時,相應的結果解釋(探討是否接受或拒絕研究假設,解釋結果形成的原因)以及相關含義衍生都在此部分完成。例如,我們進行方差分析時,SPSS可能直接輸出如下圖的結果,但我們展現結果的時候并不需要這么多看起來讓人眼花的數據結果,只需要從下表中提取出需要的那部分即可。
變異來源
型Ⅲ SS df 均方
F Sig.
整體模型
391.628 6 65.271
4.894 .001
Day
Round
Gender
271.367 3 90.456
106.297 2 53.148
13.964 1 13.964
6.783 .001
3.985 .026
1.047 .312
注:這里舉這個示例只是表達一種方法,對于模型的結果完整性并未作太多的考究
從上表三因素方差分析表可知,整體模型達顯著水平。其中Day和Round的主效應達到顯著水平,但Gender的主效應未達到顯著水平。除此之外,此模型還未考慮三者之間的交互效應……(結合其他圖表的結果作深一步的分析說明,并結合業務情況對結果進行分析說明)。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25