
協方差:定義,屬性_數據分析師
協方差分析是建立在方差分析和回歸分析基礎之上的一種統計分析方法。方差分析是從質量因子的角度探討因素不同水平對實驗指標影響的差異。一般說來,質量因子是可以人為控制的?;貧w分析是從數量因子的角度出發,通過建立回歸方程來研究實驗指標與一個(或幾個)因子之間的數量關系。但大多數情況下,數量因子是不可以人為加以控制的。
協方差定義
在概率論和統計學中,協方差用于衡量兩個變量的總體誤差。而方差是協方差的一種特殊情況,即當兩個變量是相同的情況。
期望值分別為E(X) = μ 與 E(Y) = ν 的兩個實數隨機變量X與Y之間的協方差定義為:
COV(X,Y)=E[(X-E(X))(Y-E(Y))]
其中,E是期望值。它也可以表示為:
直觀上來看,協方差表示的是兩個變量總體誤差的方差,這與只表示一個變量誤差的方差不同。
如果兩個變量的變化趨勢一致,也就是說如果其中一個大于自身的期望值,另外一個也大于自身的期望值,那么兩個變量之間的協方差就是正值。
如果兩個變量的變化趨勢相反,即其中一個大于自身的期望值,另外一個卻小于自身的期望值,那么兩個變量之間的協方差就是負值。
如果X與Y是統計獨立的,那么二者之間的協方差就是0。
但是,反過來并不成立。即如果X與Y的協方差為0,二者并不一定是統計獨立的。
協方差cov(X,Y)的度量單位是X的協方差乘以Y的協方差。而取決于協方差的相關性,是一個衡量線性獨立的無量綱的數。
協方差為0的兩個隨機變量稱為是不相關的。
協方差屬性
兩個不同參數之間的方差就是協方差 若兩個隨機變量X和Y相互獨立,則E[(X-E(X))(Y-E(Y))]=0,因而若上述數學期望不為零,則X和Y必不是相互獨立的,亦即它們之間存在著一定的關系。
定義
E[(X-E(X))(Y-E(Y))]稱為隨機變量X和Y的協方差,記作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。
協方差與方差之間有如下關系:
D(X+Y)=D(X)+D(Y)+2COV(X,Y)
D(X-Y)=D(X)+D(Y)-2COV(X,Y)
協方差與期望值有如下關系:
COV(X,Y)=E(XY)-E(X)E(Y)。
協方差的性質:
(1)COV(X,Y)=COV(Y,X);
(2)COV(aX,bY)=abCOV(X,Y),(a,b是常數);
(3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。
由協方差定義,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。
協方差作為描述X和Y相關程度的量,在同一物理量綱之下有一定的作用,但同樣的兩個量采用不同的量綱使它們的協方差在數值上表現出很大的差異。為此引入如下概念:
定義
ρXY=COV(X,Y)/√D(X)√D(Y),稱為隨機變量X和Y的相關系數。
定義
若ρXY=0,則稱X與Y不相關。
即ρXY=0的充分必要條件是COV(X,Y)=0,亦即不相關和協方差為零是等價的。
定理
設ρXY是隨機變量X和Y的相關系數,則有
(1)∣ρXY∣≤1;
(2)∣ρXY∣=1充分必要條件為P{Y=aX+b}=1,(a,b為常數,a≠0)
定義
設X和Y是隨機變量,若E(X^k),k=1,2,...存在,則稱它為X的k階原點矩,簡稱k階矩。
若E{[X-E(X)]^k},k=1,2,...存在,則稱它為X的k階中心矩。
若E(X^kY^l),k、l=1,2,...存在,則稱它為X和Y的k+l階混合原點矩。
若E{[X-E(X)]^k[Y-E(Y)]^l},k、l=1,2,...存在,則稱它為X和Y的k+l階混合中心矩。
顯然,X的數學期望E(X)是X的一階原點矩,方差D(X)是X的二階中心矩,協方差COV(X,Y)是X和Y的二階混合中心矩。CDA數據分析師培訓官網
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25