
多變量分析:多元回歸分析
多元回歸分析(Multiple Regression Analysis)是多變量分析的基礎,也是理解監督類分析方法的入口!實際上大部分學習統計分析和市場研究的人的都會用回歸分析,操作也是比較簡單的,但能夠知道多元回歸分析的適用條件或是如何將回歸應用于實踐,可能還要真正領會回歸分析的基本思想和一些實際應用手法! 下面我們就來談談多元回歸分析,這張圖是利用多元線性回歸制作的策略分析圖,你可以理解X軸是重要性,Y軸是表現;
首先,多元回歸分析應該強調是多元線性回歸分析!強調線性是因為大部分人用回歸都是線性回歸,線性的就是直線的,直線的就是簡單的,簡單的就是因果成比例的;理論上講,非線性的關系我們都可以通過函數變化線性化,就比如:Y=a+bLnX,我們可以令 t=LnX,方程就變成了 Y=a+bt,也就線性化了。
一般我們采用的變化要根據數據分布特征來進行,下表是常用的變化方法:
當然,變化的主要目的是線性化,同時期望數據分布是近似正態分布!
第二,線性回歸思想包含在其它多變量分析中,例如:判別分析的自變量實際上是回歸,尤其是Fisher線性回歸方程;Logistics回歸的自變量也是回歸,只不過是計算線性回歸方程的得分進行了概率轉換;甚至因子分析和主成分分析最終的因子得分或主成分得分也是回歸算出來的;當然,還有很多分析最終也是回歸思想!
第三:什么是“回歸”,回歸就是向平均靠攏。
第四:如果你用線性回歸方式去解釋過去,你只能朝著一個趨勢繼續,但未來對過去的偏離有無數種可能性;
第五:線性回歸方程納入的自變量越多,越應該能夠反應現實,但解釋起來就越困難;
第六:統計學家往往追求的是簡約的模型和更高的解釋度,往往關注模型R平方,共線性和回歸診斷問題;
第七:市場研究人員往往注重模型的解釋合理性,是否與預設的直覺一直,是否支持了我的市場假設等;
下面我們從市場研究人員的角度看看如何利用多元線性回歸:
多元線性回歸分析的主要目的是:解釋和預測
假設我們收集了100個企業客戶經理對我產品的總體滿意度和分項指標的滿意度評價,我期望知道,什么分項指標對我總體滿意度有重要影響,它的改進更能夠提升總體滿意度;如果建立預測模型,我期望知道了分項指標的評價就能夠預測總體滿意度數值;
在SPSS中選擇回歸分析后,把X10作為因變量,X1到X7作為自變量
一般選擇自變量進入方程的方法,可以先采用逐步回歸,讓計算機程序幫助確定變量的重要性,這在統計層面非常好,但是如果針對我現在的研究我需要采用Enter全部進入,如果某個指標不顯著,就不在方程中了我如何與客戶說呢?(假設他不懂統計,并且我需要完成上面的策略圖);
選擇相應的統計參數和輸出結果,注意:多變量分析都需要考慮缺省值問題,逐步回歸中我們可以得到R平方的變化對我們理解方程有幫助?。‥nter方法不需要)
R平方是我們最需要關注的,該值說明了方程的擬合好壞,R平方=0.80非常不錯了,說明:1)總體滿意度的80%的變差都可以由7個分項指標解釋,或者說,7個分項指標可以解釋總體滿意度80%的變差!2)R平方如果太大,大家不要高興太早,社會科學很少有那么完美的預測或解釋,一定存在了共線性!
方程分析表的顯著性表明了回歸具有解釋力!
線性回歸方程給出可預測的計算系數,但是,社會科學很少進行預測,重要的是解釋;
這里要注意的是如果自變量的測量尺度是統一的話,我們可以直接比較系數的大小,但是如果自變量的測量尺度不統一的話,我們必須看標準化回歸系數,標準化回歸系數去掉的量綱,且反應了重要性!我們就是需要重要性測量!
當然,這個時候,研究人員應該關注每個指標的回歸系數是否真的等于零,要進行假設檢驗!
我這里就直接應用了,我們可以把7個自變量指標的均值作為表現,7個自變量的標準化相關系數作為重要性,完成散點圖!重要的指標,表現差當然是我們急需改進的了,這就是前面策略圖了。
我這是典型的市場研究思維方式,不太關注統計意義,而且我將所有的坐標軸和坐標數值都讓你看不到,我只是表現了測量,或許對市場洞察足夠了;但記住統計學家不能這樣!如果你是關注統計思想的人,應該要理解下面這張回歸解釋圖!
線性回歸:提及因果關系, 必須非常謹慎!
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25