
數據挖掘如何就業
這個問題太籠統,基本上算法和應用是兩個人來做的,可能是數據挖掘職位。做算法的比較少,也比較高級。
其實所謂做算法大多數時候都不是設計新的算法(這個可以寫論文了),更多的是技術選型,特征工程抽取,最多是實現一些已經有論文但是還沒有開源模塊的算法等,還是要求扎實的算法和數據結構功底,以及豐富的分布式計算的知識的,以及不錯的英文閱讀和寫作能力。但即使是這樣也是百里挑一的,很難找到。
絕大讀書數據挖掘崗位都是做應用,數據清洗,用現成的庫建模,如果你自己不往算法或者架構方面繼續提升,和其他的開發崗位的性質基本沒什么不同,只要會編程都是很容易入門的。
2.北上廣以外的普通公司用的多嗎?待遇如何?
實際情況不太清楚,由于數據挖掘和大數據這個概念太火了,肯定到處都有人招聘響應的崗位,但是二線城市可能僅僅是停留在概念上,很多實際的工作并沒有接觸到足夠大的數據,都是生搬硬套框架(從我面試的人的工作經驗上看即使是在北上廣深這種情況也比較多見)。
只是在北上廣深,可能接觸到大數據的機會多一些。而且做數據挖掘現在熱點的技術比如Python,Spark,Scala,R這些技術除了在一線城市之外基本上沒有足夠的市場(因為會的人太少了,二線城市的公司找不到掌握這些技術的人,不招也沒人學)。
所以我推測二線城市最多的還是用JAVA+Hadoop,或者用JAVA寫一些Spark程序。北上廣深和二線城市程序員比待遇是欺負人,就不討論了。
3.和前端后端程序員比有什么區別?有什么優缺點?
和傳統的前后端程序員相比,最主要的去別就是對編程水平的要求。從我招聘的情況來看,做數據挖掘的人編程水平要求可以降低一個檔次,甚至都不用掌握面向對象。
但是要求技術全面,編程、SQL,Linux,正則表達式,Hadoop,Spark,爬蟲,機器學習模型等技術都要掌握一些。前后端可能是要求精深,數據挖掘更強調廣博,有架構能力更好。
4.目前在學習機器學習,如果想找數據挖掘方面的工作應該學習哪些內容?
打基礎是最重要的,學習一門數據挖掘常用的語言,比如Python,Scala,R;學習足夠的Linux經驗,能夠通過awk,grep等Linux命令快速的處理文本文件。掌握SQL,MySQL或者PostgreSQL都是比較常用的關系型數據庫,搞數據的別跟我說不會用數據庫。
補充的一些技能,比如NoSQL的使用,Elasticsearch的使用,分詞(jieba等模塊的使用),算法的數據結構的知識。
5.hadoop,hive之類的需要學習嗎?
我覺得應當學習,首先Hadoop和Hive很簡單(如果你用AWS的話你可以開一臺EMR,上面直接就有Hadoop和Hive,可以直接從使用學起)。
我覺得如果不折騰安裝和部署,還有Linux和MySQL的經驗,只要半天到一天就能熟悉Hadoop和Hive的使用(當然你得有Linux和MySQL的基礎,如果沒有就先老老實實的學Linux和MySQL,這兩個都可以在自己的PC上安裝,自己折騰)。
Spark對很多人來說才是需要學習的,如果你有JAVA經驗大可以從JAVA入門。如果沒有那么還是建議從Scala入門,但是實際上如果沒有JAVA經驗,Scala入門也會有一定難度,但是可以慢慢補。
所以總的來說Spark才足夠難,以至于需要學習。
最后的最后我有一些建議。第一要對自己有一個系統的認知,自己的編程水平夠么,SQL會用么,Linux會用么,能流暢的看英文文檔么?
如果上面任何一個問題的答案是No,我都不建議直接轉行或者申請高級的數據挖掘職位(因為你很難找到一個正經的數據挖掘崗位,頂多是一些打擦邊球的崗位,無論是實際干的工作還是未來的成長可能對你的幫助都不大)。
無論你現在是學生還是已經再做一些前段后端、運維之類的工作你都有足夠的時間補齊這些基礎知識。
補齊了這些知識之后,第一件事就是了解大數據生態,Hadoop生態圈,Spark生態圈,機器學習,深度學習(后兩者需要高等數學和線性代數基礎,如果你的大學專業學這些不要混)。
選定其中一個方向做一些鉆研和學習,網上有很多現成的資料(基本上是英文的,所以我說了,不能看英文的趕緊去背單詞),科學上網用谷歌這個大家都懂。希望我的建議能對你有一些幫助。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25