
作者:豌豆花下貓
來源:Python貓
在之前的文章《python 中如何實現參數化測試?》中,我提到了在 python 中實現參數化測試的幾個庫,并留下一個問題:它們是如何做到把一個方法變成多個方法,并且將每個方法與相應的參數綁定起來的呢?
我們再提煉一下,原問題等于是:在一個類中,如何使用裝飾器把一個類方法變成多個類方法(或者產生類似的效果)?
# 帶有一個方法的測試類 class TestClass: def test_func(self): pass # 使用裝飾器,生成多個類方法 class TestClass: def test_func1(self): pass def test_func2(self): pass def test_func3(self): pass
Python 中裝飾器的本質就是移花接木,用一個新的方法來替代被裝飾的方法。在實現參數化的過程中,我們介紹過的幾個庫到底用了什么手段/秘密武器呢?
1、ddt 如何實現參數化?
先回顧一下上篇文章中 ddt 庫的寫法:
import unittest from ddt import ddt,data,unpack @ddt class MyTest(unittest.TestCase): @data((3, 1), (-1, 0), (1.2, 1.0)) @unpack def test(self, first, second): pass
ddt 可提供 4 個裝飾器:1 個加在類上的 @ddt,還有 3 個加在類方法上的 @data、@unpack 和 @file_data(前文未提及)。
先看看加在類方法上的三個裝飾器的作用:
# ddt 版本(win):1.2.1 def data(*values): global index_len index_len = len(str(len(values))) return idata(values) def idata(iterable): def wrapper(func): setattr(func, DATA_ATTR, iterable) return func return wrapper def unpack(func): setattr(func, UNPACK_ATTR, True) return func def file_data(value): def wrapper(func): setattr(func, FILE_ATTR, value) return func return wrapper
它們的共同作用是在類方法上 setattr() 添加屬性。至于這些屬性在什么時候使用?下面看看加在類上的 @ddt 裝飾器源碼:
第一層 for 循環遍歷了所有的類方法,然后是 if/elif 兩條分支,分別對應 DATA_ATTR/FILE_ATTR,即對應參數的兩種來源:數據(@data)和文件(@file_data)。
elif 分支有解析文件的邏輯,之后跟處理數據相似,所以我們把它略過,主要看前面的 if 分支。這部分的邏輯很清晰,主要完成的任務如下:
分析源碼,可以看出,@data、@unpack 和 @file_data 這三個裝飾器主要是設置屬性并傳參,而 @ddt 裝飾器才是核心的處理邏輯。
這種將裝飾器分散(分別加在類與類方法上),再組合使用的方案,很不優雅。為什么就不能統一起來使用呢?后面我們會分析它的難言之隱,先按下不表,看看其它的實現方案是怎樣的?
2、parameterized 如何實現參數化?
先回顧一下上篇文章中 parameterized 庫的寫法:
import unittest from parameterized import parameterized class MyTest(unittest.TestCase): @parameterized.expand([(3,1), (-1,0), (1.5,1.0)]) def test_values(self, first, second): self.assertTrue(first > second)
它提供了一個裝飾器類 @parameterized,源碼如下(版本 0.7.1),主要做了一些初始的校驗和參數解析,并非我們關注的重點,略過。
我們主要關注這個裝飾器類的 expand() 方法,它的文檔注釋中寫到:
A "brute force" method of parameterizing test cases. Creates new test cases and injects them into the namespace that the wrapped function is being defined in. Useful for parameterizing tests in subclasses of 'UnitTest', where Nose test generators don't work.
關鍵的兩個動作是:“creates new test cases(創建新的測試單元)”和“inject them into the namespace…(注入到原方法的命名空間)”。
關于第一點,它跟 ddt 是相似的,只是一些命名風格上的差異,以及參數的解析及綁定不同,不值得太關注。
最不同的則是,怎么令新的測試方法生效?
parameterized 使用的是一種“注入”的方式:
inspect 是個功能強大的標準庫,在此用于獲取程序調用棧的信息。前三句代碼的目的是取出 f_locals,它的含義是“local namespace seen by this frame”,此處 f_locals 指的就是類的局部命名空間。
說到局部命名空間,你可能會想到 locals(),但是,我們之前有文章提到過“locals() 與 globals() 的讀寫問題”,locals() 是可讀不可寫的,所以這段代碼才用了 f_locals。
3、pytest 如何實現參數化?
按慣例先看看上篇文章中的寫法:
import pytest @pytest.mark.parametrize("first,second", [(3,1), (-1,0), (1.5,1.0)]) def test_values(first, second): assert(first > second)
首先看到“mark”,pytest 里內置了一些標簽,例如 parametrize、timeout、skipif、xfail、tryfirst、trylast 等,還支持用戶自定義的標簽,可以設置執行條件、分組篩選執行,以及修改原測試行為等等。
用法也是非常簡單的,然而,其源碼可復雜多了。我們這里只關注 parametrize,先看看核心的一段代碼:
根據傳入的參數對,它復制了原測試方法的調用信息,存入待調用的列表里。跟前面分析的兩個庫不同,它并沒有在此創建新的測試方法,而是復用了已有的方法。在 parametrize() 所屬的 Metafunc 類往上查找,可以追蹤到 _calls 列表的使用位置:
最終是在 Function 類中執行:
好玩的是,在這里我們可以看到幾行神注釋……
閱讀(粗淺涉獵) pytest 的源碼,真的是自討苦吃……不過,依稀大致可以看出,它在實現參數化時,使用的是生成器的方案,遍歷一個參數則調用一次測試方法,而前面的 ddt 和 parameterized 則是一次性把所有參數解析完,生成 n 個新的測試方法,再交給測試框架去調度。
對比一下,前兩個庫的思路很清晰,而且由于其設計單純是為了實現參數化,不像 pytest 有什么標記和過多的抽象設計,所以更易讀易懂。前兩個庫發揮了 Python 的動態特性,設置類屬性或者注入局部命名空間,而 pytest 倒像是從什么靜態語言中借鑒的思路,略顯笨拙。
4、最后小結
回到標題中的問題“如何將一個方法變為多個方法?”除了在參數化測試中,不知還有哪些場景會有此訴求?歡迎留言討論。
本文分析了三個測試庫的裝飾器實現思路,通過閱讀源碼,我們可以發現它們各有千秋,這個發現本身還挺有意思。在使用裝飾器時,表面看它們差異不大,但是真功夫的細節都隱藏在底下。
源碼分析的意義在于探究其所以然,在這次探究之旅中,讀者們可有什么收獲???一起來聊聊吧!
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25