
作者:接地氣的陳老師?
來源:接地氣學堂
業務方要你人工智能大數據精準預測,預測偏差多少錢,就扣你多少錢的工資,你怕不?!偏偏真的就有很多類似場景,話不多說,直接上干貨:
問題場景:
某互聯網金融公司準備通過投放獲取投資客戶,最近聽說私域流量很火,但是從來沒在公眾號渠道試驗過,現計劃在公眾號渠道進行投放,請數據分析部門利用大數據人工智能精準預測投放效果,到底做一次投放能賺多少錢。假設你是這個公司的數據分析師……
?1?別忘了你還有這個武器
正確回答:預測個屁!業務部門是不懂數據原理的,有想不明白的事搬出“大數據人工智能”就好了。但做數據的人腦子得格外清醒。按題中的場景,業務上連一次都沒做過,連數據都沒有,這還預測個毛線。這時候應該做測試,先收集一些數據,有了相當的數據積累以后再談預測的事。
測試從來都是數據分析解決問題的手段。俗話說:是騾子是馬,拉出來遛遛。測試就是遛馬的過程,結果好壞一眼即明。特別針對:新渠道、新產品、新團隊這種創新情況。舊的數據不能完全推演創新,就更得上測試了。只不過,這些年熱炒的都是基于自有App的ABtest,所以很多新人忽視了更普遍的測試設計方法,今天我們系統講解下。
?2?設計測試的基本要求
很多新人會想當然的認為:測試不就是讓業務先搞幾次,那讓他們搞,我們等著收數據不就好了。這種偷懶的想法,會在事后給自己添加無窮無盡的麻煩。
首先,測試是有業務代價的。
比如本場景中,投放是為了拉新用戶和新投資,花了錢要見效果,不然肯定被老板diss。那么相關的問題就來了:
這些都得事先有個清晰界定,才能避免糾結。
其次,測試是有內容設計的。
比如本場景中,用戶會不會被吸引來,和投放號類型、投放時機、文案、轉化路徑、產品選擇、CTA動作,都有關系,如果一開始不做認真設計。只是簡單的丟一個,那很多其他可能無法對比測試,就不能推導出有效結論。
再次,測試是受投入影響的。
比如本場景中,有可能優質的渠道需要花很多錢,有可能用戶補貼力度得比其他渠道大一點,導致的結果就是可能第一輪不見效,但第二輪增加力度就見效了!所以要不要做追加投入,也得事先考慮清楚。
由于以上三點,使得測試需要分四個階段,做好充分的準備再上路(如下圖)
?3?部署階段
部署階段要解決的是戰略問題:
在本場景中,作為新投放渠道測試,則首先得搞清楚渠道的定位。常見的有:
主力渠道:承擔50%+的流量來源,主要投資方向
助攻渠道:承擔20%+的流量來源,次要投資方向
邊緣渠道:單渠道流量不超過5%,選擇性投放
零散渠道:有它沒它關系不大,聊勝于無
可以根據當期的整體渠道投放目標,反推需要的流量;之后根據業務上策略(下決心建立新渠道,還是跟風玩玩),把任務分配清楚,之后定義好本次測試新渠道的定位。有了清晰的定位,自然很容易得出:投多少錢,做多少次。有了財力、人力、時間的界定,后續設計方案就簡單了。
?4?準備階段
準備階段要解決的是戰術問題:
?在本場景中,由于是完全沒有經驗,因此需要第三方/同業的案例、數據做支持。雖然不能拿到100%準確的數據,但至少能照貓畫虎,比如:
經過梳理,至少有一個大概方向,比閉著眼睛瞎胡做強的多。注意,站在用戶角度,影響用戶行為的因素是綜合性的。比如公眾號渠道投放,標題、長度、投放時間、內容寫法、CTA、轉化路徑、產品價格、產品屬性等等等都會有影響。
用數據進行測試,很難在一次測試把以上因素全部拆解清楚,因此需要提前準備多個測試版本,且測試版本之間差異不能太大,有一定延續性,這樣才能為后期分析做好準備。
以上全部是標紅加粗,是因為在實際工作中,業務方經常喜歡糾結細節,結果搞出來的各個版本一個天上一個地下,完全沒有可比性。除了看整體轉化結果外,細節完全無法對標,因此很難做深入分析。可以說事后分析的艱難,有80%是因為事先沒有做好計劃導致的,切記切記。
?5?測試與復盤階段
準備好以后,可以上線測試和復盤。本場景是渠道投放,且目標就是獲取新投資用戶,因此考核結果指標相對簡單清晰,看轉化來的用戶數,用戶投資率,用戶投資金額幾個指標即可。只要測試結果能達成部署階段的目標,就算渠道合格,完成任務。如果不行,可以根據事先制定的迭代方案,進行迭代優化,進一步觀察效果。
這里要強調的是一些細節問題:
1、結果判斷和原因分析要分開。先判斷結果是否可接受,再分析哪個環節有問題。
2、迭代有順序進行,產品、價格、內容要分開。最好一次換一個,最差也不要仨一起換。
3、優先換產品、價格,內容不一條條換。內容涉及細節太多,全部測出來成本太高,因此優先考慮產品和價格。
這樣看數據的時候,可以按以下順序展開:
?6?小結
為啥開頭要問如何人工智能大數據精準預測?是因為很多同學真的以為能預測!不但業務部門迷信預測,連很多數據分析師自己都信了,還真以為隨便搞幾個數字就是大數據了,真以為隨便懟個模型調個參就是人工智能了,還真為人工智能就是全知全能的上帝一道金光從天而降代碼就能變成鈔票,隨著鍵盤的敲動從屏幕里噴薄而出……
?這些看似毫無技術含量的傳統流程,才是用數據保障業務增長的秘籍。
——熱門課程推薦:
想從事業務型數據分析師,您可以點擊>>>“數據分析師”了解課程詳情;
想從事大數據分析師,您可以點擊>>>“大數據就業”了解課程詳情;
想成為人工智能工程師,您可以點擊>>>“人工智能就業”了解課程詳情;
想了解Python數據分析,您可以點擊>>>“Python數據分析師”了解課程詳情;
想咨詢互聯網運營,你可以點擊>>>“互聯網運營就業班”了解課程詳情;
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25