
作者:俊欣
來源:關于數據分析與可視化
今天我們來聊一下如何用協程來進行數據的抓取,協程又稱為是微線程,也被稱為是用戶級線程,在單線程的情況下完成多任務,多個任務按照一定順序交替執行。
那么aiohttp模塊在Python中作為異步的HTTP客戶端/服務端框架,是基于asyncio的異步模塊,可以用于實現異步爬蟲,更快于requests的同步爬蟲。下面我們就通過一個具體的案例來看一下該模塊到底是如何實現異步爬蟲的。
我們先來看一下發起請求的部分,代碼如下
async def fetch(url, session): try: async with session.get(url, headers=headers, verify_ssl=False) as resp: if resp.status in [200, 201]:
logger.info("請求成功")
data = await resp.text() return data except Exception as e:
print(e)
logger.warning(e)
要是返回的狀態碼是200或者是201,則獲取響應內容,下一步我們便是對響應內容的解析
這里用到的是PyQuery模塊來對響應的內容進行解析,代碼如下
def extract_elements(source): try:
dom = etree.HTML(source)
id = dom.xpath('......')[0]
title = dom.xpath('......')[0]
price = dom.xpath('.......')[0]
information = dict(re.compile('.......').findall(source))
information.update(title=title, price=price, url=id)
print(information)
asyncio.ensure_future(save_to_database(information, pool=pool)) except Exception as e:
print('解析詳情頁出錯!')
logger.warning('解析詳情頁出錯!') pass
最后則是將解析出來的內容存入至數據庫當中
這里用到的是aiomysql模塊,使用異步IO的方式保存數據到Mysql當中,要是不存在對應的數據表,我們則創建對應的表格,代碼如下
async def save_to_database(information, pool): COLstr = '' # 列的字段 ROWstr = '' # 行字段 ColumnStyle = ' VARCHAR(255)' if len(information.keys()) == 14: for key in information.keys():
COLstr = COLstr + ' ' + key + ColumnStyle + ',' ROWstr = (ROWstr + '"%s"' + ',') % (information[key]) async with pool.acquire() as conn: async with conn.cursor() as cur: try: await cur.execute("SELECT * FROM %s" % (TABLE_NAME)) await cur.execute("INSERT INTO %s VALUES (%s)" % (TABLE_NAME, ROWstr[:-1])) except aiomysql.Error as e: await cur.execute("CREATE TABLE %s (%s)" % (TABLE_NAME, COLstr[:-1])) await cur.execute("INSERT INTO %s VALUES (%s)" % (TABLE_NAME, ROWstr[:-1])) except aiomysql.Error as e: pass
最后我們來看一下項目啟動的代碼,如下
async def consumer():
async with aiohttp.ClientSession() as session: while not stop: if len(urls) != 0:
_url = urls.pop() source = await fetch(_url, session)
extract_links(source) if len(links_detail) == 0:
print('目前沒有待爬取的鏈接')
await asyncio.sleep(np.random.randint(5, 10))
continue link = links_detail.pop() if link not in crawled_links_detail:
asyncio.ensure_future(handle_elements(link, session))
我們通過調用ensure_future方法來安排協程的進行
async def handle_elements(link, session): print('開始獲取: {}'.format(link))
source = await fetch(link, session) # 添加到已爬取的集合中 crawled_links_detail.add(link)
extract_elements(source)
下面我們針對抓取到的數據進行進一步的分析與可視化,數據源是關于上海的二手房的相關信息,我們先來看一下房屋戶型的分布,代碼如下
house_size_dict = {}
for house_size, num in zip(df["房屋戶型"].value_counts().head(10).index, df["房屋戶型"].value_counts().head(10).tolist()):
house_size_dict[house_size] = num
print(house_size_dict)
house_size_keys_list = [key for key, values in house_size_dict.items()]
house_size_values_list = [values for key, values in house_size_dict.items()]
p = (
Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add("", [list(z) for z in zip(house_size_keys_list, house_size_values_list)],
radius=["35%", "58%"],
center=["58%", "42%"])
.set_global_opts(title_opts=opts.TitleOpts(title="房屋面積大小的區間", pos_left="40%"),
legend_opts=opts.LegendOpts(orient="vertical",
pos_top="15%",
pos_left="10%"))
.set_series_opts(label_opts=opts.LabelOpts(formatter=": {c}"))
)
p.render("house_size.html")
output
我們可以看到占到大多數的都是“2室1廳1廚1衛”的戶型,其次便是“1室1廳1廚1衛”的戶型,可見上海二手房交易的市場賣的小戶型為主。而他們的所在樓層,大多也是在高樓層(共6層)的為主,如下圖所示
我們再來看一下房屋的裝修情況,市場上的二手房大多都是以“簡裝”或者是“精裝”為主,很少會看到“毛坯”的存在,具體如下圖所示
至此,我們就暫時先說到這里,本篇文章主要是通過異步協程的方式來進行數據的抓取,相比較于常規的requests數據抓取而言,速度會更快一些。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25