
作者:俊欣
來源:關于數據分析與可視化
最近Python圈子當中出來一個非?;鸨目蚣?span style="color:#3594F7;">PyScript,該框架可以在瀏覽器中運行Python程序,只需要在HTML程序中添加一些Python代碼即可實現。該項目出來之后便引起了轟動,馬上躥升到了Github趨勢榜榜首,短短20天已經有10K+的star了。既然如此,小編今天就帶大家來看看該框架是如何使用的。
我們先來看一下簡單的例子,代碼如下
<html> <head> <link rel="stylesheet" href="https://pyscript.net/alpha/pyscript.css" /> <script defer src="https://pyscript.net/alpha/pyscript.js"></script> </head> <body> <py-script> print('Hello, World!') </py-script> </body> </html>
其中Python代碼被包裹在了py-script標簽里面,然后我們在瀏覽器中查看出來的結果,如下所示
下面這一個例子當中,我們嘗試將matplotlib繪制圖表的代碼放置到HTML代碼當中去,以實現繪制出一張直方圖的操作。首先是matplotlib代碼部分,
import matplotlib.pyplot as plt import numpy as np
np.random.seed(42) ## 隨機生成滿足正態分布的隨機數據 rv = np.random.standard_normal(1000)
fig, ax = plt.subplots()
ax.hist(rv, bins=30)
output
然后我們將上面的代碼放置到HTML代碼當中去,代碼如下
<html> <head> <link rel="stylesheet" href="https://pyscript.net/alpha/pyscript.css"/> <script defer src="https://pyscript.net/alpha/pyscript.js"></script> <py-env> - numpy
- matplotlib </py-env> </head> <body> <h1>Plotting a histogram of Standard Normal distribution</h1> <div id="plot"></div> <py-script output="plot"> import matplotlib.pyplot as plt
import numpy as np
np.random.seed(42)
rv = np.random.standard_normal(1000)
fig, ax = plt.subplots()
ax.hist(rv, bins=30)
fig </py-script> </body> </html>
output
由于我們后面需要用到numpy和matplotlib兩個庫,因此我們通過py-env標簽來引進它們,另外
我們在上面的基礎之上,再來繪制一張折線圖,首先我們再創建一個div標簽,里面的id是lineplot,代碼如下
<div id="lineplot"></div>
同樣地在py-script標簽中放置繪制折線圖的代碼,output對應div標簽中的id值
<py-script output="lineplot"> ......... </py-script>
繪制折線圖的代碼如下
import matplotlib.pyplot as plt fig, ax = plt.subplots() year1 = [2016, 2017, 2018, 2019, 2020] population1 = [30, 46, 45, 55, 48] year2 = [2016, 2017, 2018, 2019, 2020] population2 = [43, 48, 44, 75, 45] plt.plot(year1, population1, marker='o', linestyle='--', color='g', label='Countr_1') plt.plot(year2, population2, marker='d', linestyle='-', color='r', label='Country_2') plt.xlabel('Year') plt.ylabel('Population (M)') plt.title('Year vs Population') plt.legend(loc='lower right') fig
output
現階段運行帶有Pyscript的頁面加載速度并不會特別地快,該框架剛剛推出,仍然處于測試的階段,后面肯定會不斷地優化。要是遇到加載速度慢地問題,讀者朋友看一下是不是可以通過更換瀏覽器得以解決。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25