
現代商業中大數據的價值體現在哪
大數據最大的價值不是事后分析,而是預測和推薦我們可以看到”精準推薦”在電商中的運用,預測性分析成為大數據在零售業的主流。
服裝網站Stitch Fix例子,在個性化推薦機制方面,大多數服裝訂購網站采用的都是用戶提交身形、風格數據+編輯人工推薦的模式,Stitch Fix不一樣的地方在于它還結合了機器算法推薦。這些顧客提供的身材比例,主觀數據,加上銷售記錄的交叉核對,挖掘每個人專屬的服裝推薦模型。 這種一對一營銷是最好的服務。
數據整合改變了企業的營銷方式,現在經驗已經不再是單純地人去一步步試錯,而是通過消費者的行為數據做推薦,幫助有經驗的營銷人員進行更高效準確的決策。未來,銷售人員不再只是銷售人員,而能以專業的數據預測,搭配人性的親切互動推薦商品,升級成為顧問型銷售。
下面舉個例子說明精準營銷的好處。
如果你打算搜集200份有效問卷,依照以往的經驗,你需要發多少份問卷,才能達到這個目標?預計用多少預算和時間來執行?
以往的方法是這樣的:評估網絡問卷大約是5%的回收率,想要保證收到200份的問卷,就必須有20倍的發送量,也就是發出4000份問卷,一個月內如果可以回收,就是不錯的表現。
但現在不一樣了,在執行大數據分析的3小時內,就可以輕松完成以下的目標:
1. 精準挑選出1%的VIP顧客
2. 發送390份問卷,全部回收
3. 問卷寄出3小時內回收35%的問卷
4. 5天內就回收了超過目標數86%的問卷數
5. 所需時間和預算都在以往的10%以下
怎么做到在問卷發送后的3個小時就回收35%? 因為數據做到了發送時間的”一對一定制化”,利用數據得出,A先生最可能在什么時間打開郵件就在那個時間點發送問卷。
比如有些人在上班路上會打開郵件,但如果是開車族,并沒有時間填寫答案,而搭乘公共交通工具的人,上班路上的時間會玩手機,填寫答案的概率就高,這些都是數據細分受眾的好處。
生成用戶的精準畫像大致分成三步:
1 采集和清理數據:用已知預測未知
首先要掌握繁雜的數據源。包括用戶數據、各式活動數據、電子郵件訂閱數、線上或線下數據庫及客戶服務信息等。這個是累積數據庫;這里面最基礎的就是如何收集網站/APP用戶行為數據。
比如當你登陸某網站,這個Cookie就一直駐留在瀏覽器中,當用戶觸及的動作,點擊的位置,按鈕,點贊,評論,粉絲,還有訪問的路徑,可以識別并記錄他/她的所有瀏覽行為,然后持續分析瀏覽過的關鍵詞和頁面,分析出他的短期需求和長期興趣。還可以通過分析朋友圈,獲得非常清晰獲得對方的工作,愛好,教育等方面,這比個人填寫的表單,還要更全面和真實。
我們用已知的數據尋找線索,不斷挖掘素材,不但可以鞏固老會員,也可以分析出未知的顧客與需求,進一步開發市場。
2 用戶分群:分門別類貼標簽
描述分析是最基本的分析統計方法,描述統計分為兩大部分:數據描述和指標統計。
數據描述:用來對數據進行基本情況的刻畫,包括數據總數,范圍,數據來源。
指標統計:把分布,對比,預測指標進行建模。這里常常是Data mining的一些數學模型,像響應率分析模型,客戶傾向性模型,這類分群使用Lift圖,用打分的方法告訴你哪一類客戶有較高的接觸和轉化的價值。
在分析階段,數據會轉換為影響指數,進而可以做”一對一”的精準營銷。比如一個80后客戶喜歡在生鮮網站上早上10點下單買菜,晚上6點回家做飯,周末喜歡去附近吃日本料理,經過搜集與轉換,就會產生一些標簽,包括”80后””生鮮””做飯””日本料理”等等,貼在消費者身上。
3 制定策略:優化再調整
有了用戶畫像之后,便能清楚了解需求,在實際操作上,能深度經營顧客關系,甚至找到擴散口碑的機會。例如上面例子中,若有生鮮的打折券,日本餐館最新推薦,營銷人員就會把適合產品的相關信息,精準推送這個消費者的手機中;針對不同產品發送推薦信息,同時也不斷通過滿意度調查,跟蹤碼確認等方式,掌握顧客各方面的行為與偏好。
除了顧客分群之外,營銷人員也在不同時間階段觀察成長率和成功率,前后期對照,確認整體經營策略與方向是否正確;若效果不佳,又該用什么策略應對。反復試錯并調整模型,做到循環優化。
這個階段的目的是提煉價值,再根據客戶需求精準營銷,最后追蹤客戶反饋的信息,完成閉環優化。
我們從數據整合導入開始,聚合數據,在進行數據的分析挖掘。數據分析和挖掘還是有一些區別。數據分析重點是觀察數據,單純的統計,看KPI的升降原因。而數據挖掘從細微和模型角度去研究數據,從學習集,訓練集發現知識規則,
除了一些比較商業化的軟件SAS,WEKA功能強大的數據分析挖掘軟件,這邊還是更推薦使用R,Python。由于SAS,SPSS本身比較昂貴,很難做頁面和服務級別的API,而Python和R有豐富的庫,可以類似WEKA的模塊,無縫交互其他API和程序,這里還需要熟悉數據庫,Hadoop等。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25