
python實現六大分群質量評估指標(蘭德系數、互信息、輪廓系數)
1 R語言中的分群質量——輪廓系數
因為先前慣用R語言,那么來看看R語言中的分群質量評估,節選自筆記︱多種常見聚類模型以及分群質量評估(聚類注意事項、使用技巧):
沒有固定標準,一般會3-10分群?;蛘哂靡恍┲笜嗽u價,然后交叉驗證不同群的分群指標。
一般的指標:輪廓系數silhouette(-1,1之間,值越大,聚類效果越好)(fpc包),蘭德指數rand;R語言中有一個包用30種方法來評價不同類的方法(NbClust),但是速度較慢
商業上的指標:分群結果的覆蓋率;分群結果的穩定性;分群結果是否從商業上易于理解和執行
輪廓系數旨在將某個對象與自己的簇的相似程度和與其他簇的相似程度進行比較。輪廓系數最高的簇的數量表示簇的數量的最佳選擇。
一般來說,平均輪廓系數越高,聚類的質量也相對較好。在這,對于研究區域的網格單元,最優聚類數應該是2,這時平均輪廓系數的值最高。但是,聚類結果(k=2)的 SSE 值太大了。當 k=6 時,SEE 的值會低很多,但此時平均輪廓系數的值非常高,僅僅比 k=2 時的值低一點。因此,k=6 是最佳的選擇。
2 python中的分群質量
主要參考來自官方文檔:Clustering
部分內容來源于:機器學習評價指標大匯總
個人比較偏好的三個指標有:Calinski-Harabaz Index(未知真實index的模型評估)、Homogeneity, completeness and V-measure(聚類數量情況)、輪廓系數
1.1 Adjusted Rand index 調整蘭德系數
>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
0.24
1.2 Mutual Information based scores 互信息
Two different normalized versions of this measure are available, Normalized Mutual Information(NMI) and Adjusted Mutual Information(AMI). NMI is often used in the literature while AMI was proposed more recently and is normalized against chance:
>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
0.22504
1.3 Homogeneity, completeness and V-measure
同質性homogeneity:每個群集只包含單個類的成員。
完整性completeness:給定類的所有成員都分配給同一個群集。
>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]
>>> metrics.homogeneity_score(labels_true, labels_pred)
0.66...
>>> metrics.completeness_score(labels_true, labels_pred)
0.42...
兩者的調和平均V-measure:
>>> metrics.v_measure_score(labels_true, labels_pred)
0.51...
1.4 Fowlkes-Mallows scores
The Fowlkes-Mallows score FMI is defined as the geometric mean of the pairwise precision and recall:
>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]
>>>
>>> metrics.fowlkes_mallows_score(labels_true, labels_pred)
0.47140...
1.5 Silhouette Coefficient 輪廓系數
>>> import numpy as np
>>> from sklearn.cluster import KMeans
>>> kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)
>>> labels = kmeans_model.labels_
>>> metrics.silhouette_score(X, labels, metric='euclidean')
...
0.55...
1.6 Calinski-Harabaz Index
這個計算簡單直接,得到的Calinski-Harabasz分數值ss越大則聚類效果越好。Calinski-Harabasz分數值ss的數學計算公式是:
也就是說,類別內部數據的協方差越小越好,類別之間的協方差越大越好,這樣的Calinski-Harabasz分數會高。
在scikit-learn中, Calinski-Harabasz Index對應的方法是metrics.calinski_harabaz_score.
在真實的分群label不知道的情況下,可以作為評估模型的一個指標。
同時,數值越小可以理解為:組間協方差很小,組與組之間界限不明顯。
與輪廓系數的對比,筆者覺得最大的優勢:快!相差幾百倍!毫秒級
>>> import numpy as np
>>> from sklearn.cluster import KMeans
>>> kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)
>>> labels = kmeans_model.labels_
>>> metrics.calinski_harabaz_score(X, labels)
560.39...
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25