
在Python中定義和使用抽象類的方法
提起Java的抽象類大家都比較熟悉,Python中我們可以使用abc模塊來構建抽象類,這里就為大家講解在Python中定義和使用抽象類的方法
像java一樣python也可以定義一個抽象類。
在講抽象類之前,先說下抽象方法的實現。
抽象方法是基類中定義的方法,但卻沒有任何實現。在java中,可以把方法申明成一個接口。而在python中實現一個抽象方法的簡單的方法是:
class Sheep(object):
def get_size(self):
raise NotImplementedError
任何從Sheep繼承下來的子類必須實現get_size方法。否則就會產生一個錯誤。但這種實現方法有個缺點。定義的子類只有調用那個方法時才會拋錯。這里有個簡單方法可以在類被實例化后觸發它。使用python提供的abc模塊。
import abc
class Sheep(object):
__metaclass__ = abc.ABCMeta
@abc.absractmethod
def get_size(self):
return
這里實例化Sheep類或任意從其繼承的子類(未實現get_size)時候都會拋出異常。
因此,通過定義抽象類,可以定義子類的共同method(強制其實現)。
如何使用抽象類
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def load(self, input):
return
@abc.abstractmethod
def save(self, output, data):
return
通過ABCMeta元類來創建一個抽象類, 使用abstractmethod裝飾器來表明抽象方法
注冊具體類
class B(object):
def load(self, input):
return input.read()
def save(self, output, data):
return output.write(data)
A.register(B)
if __name__ == '__main__':
print issubclass(B, A) # print True
print isinstance(B(), A) # print True
從抽象類注冊一個具體的類
子類化實現
class C(A):
def load(self, input):
return input.read()
def save(self, output, data):
return output.write(data)
if __name__ == '__main__':
print issubclass(C, A) # print True
print isinstance(C(), A) # print True
可以使用繼承抽象類的方法來實現具體類這樣可以避免使用register. 但是副作用是可以通過基類找出所有的具體類
for sc in A.__subclasses__():
print sc.__name__
# print C
如果使用繼承的方式會找出所有的具體類,如果使用register的方式則不會被找出
使用__subclasshook__
使用__subclasshook__后只要具體類定義了與抽象類相同的方法就認為是他的子類
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def say(self):
return 'say yeah'
@classmethod
def __subclasshook__(cls, C):
if cls is A:
if any("say" in B.__dict__ for B in C.__mro__):
return True
return NotTmplementd
class B(object):
def say(self):
return 'hello'
print issubclass(B, A) # True
print isinstance(B(), A) # True
print B.__dict__ # {'say': <function say at 0x7f...>, ...}
print A.__subclasshook__(B) # True
不完整的實現
class D(A):
def save(self, output, data):
return output.write(data)
if __name__ == '__main__':
print issubclass(D, A) # print True
print isinstance(D(), A) # raise TypeError
如果構建不完整的具體類會拋出D不能實例化抽象類和抽象方法
具體類中使用抽象基類
import abc
from cStringIO import StringIO
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def retrieve_values(self, input):
pirnt 'base class reading data'
return input.read()
class B(A):
def retrieve_values(self, input):
base_data = super(B, self).retrieve_values(input)
print 'subclass sorting data'
response = sorted(base_data.splitlines())
return response
input = StringIO("""line one
line two
line three
""")
reader = B()
print reader.retrieve_values(input)
打印結果
base class reading data
subclass sorting data
['line one', 'line two', 'line three']
可以使用super來重用抽象基類中的羅輯, 但會迫使子類提供覆蓋方法.
抽象屬性
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractproperty
def value(self):
return 'should never get here.'
class B(A):
@property
def value(self):
return 'concrete property.'
try:
a = A()
print 'A.value', a.value
except Exception, err:
print 'Error: ', str(err)
b = B()
print 'B.value', b.value
打印結果,A不能被實例化,因為只有一個抽象的property getter method.
Error: ...
print concrete property
定義抽象的讀寫屬性
import abc
class A(object):
__metaclass__ = abc.ABCMeta
def value_getter(self):
return 'Should never see this.'
def value_setter(self, value):
return
value = abc.abstractproperty(value_getter, value_setter)
class B(A):
@abc.abstractproperty
def value(self):
return 'read-only'
class C(A):
_value = 'default value'
def value_getter(self):
return self._value
def value_setter(self, value):
self._value = value
value = property(value_getter, value_setter)
try:
a = A()
print a.value
except Exception, err:
print str(err)
try:
b = B()
print b.value
except Exception, err:
print str(err)
c = C()
print c.value
c.value = 'hello'
print c.value
打印結果, 定義具體類的property時必須與抽象的abstract property相同。如果只覆蓋其中一個將不會工作.
error: ...
error: ...
print 'default value'
print 'hello'
使用裝飾器語法來實現讀寫的抽象屬性, 讀和寫的方法應該相同.
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractproperty
def value(self):
return 'should never see this.'
@value.setter
def value(self, _value):
return
class B(A):
_value = 'default'
@property
def value(self):
return self._value
@value.setter
def value(self, _value):
self._value = _value
b = B()
print b.value # print 'default'
b.value = 'hello'
print b.value # print 'hello'
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25