熱線電話:13121318867

登錄
首頁精彩閱讀python編寫樸素貝葉斯用于文本分類
python編寫樸素貝葉斯用于文本分類
2018-01-08
收藏

python編寫樸素貝葉斯用于文本分類

樸素貝葉斯估計

樸素貝葉斯是基于貝葉斯定理與特征條件獨立分布假設的分類方法。首先根據特征條件獨立的假設學習輸入/輸出的聯合概率分布,然后基于此模型,對給定的輸入x,利用貝葉斯定理求出后驗概率最大的輸出y。
具體的,根據訓練數據集,學習先驗概率的極大似然估計分布

以及條件概率為

Xl表示第l個特征,由于特征條件獨立的假設,可得

條件概率的極大似然估計為

根據貝葉斯定理

則由上式可以得到條件概率P(Y=ck|X=x)。

貝葉斯估計

用極大似然估計可能會出現所估計的概率為0的情況。后影響到后驗概率結果的計算,使分類產生偏差。采用如下方法解決。
條件概率的貝葉斯改

其中Sl表示第l個特征可能取值的個數。
同樣,先驗概率的貝葉斯估計改為

$$
P(Y=c_k) = \frac{\sum\limits_{i=1}^NI(y_i=c_k)+\lambda}{N+K\lambda}
$K$

表示Y的所有可能取值的個數,即類型的個數。
具體意義是,給每種可能初始化出現次數為1,保證每種可能都出現過一次,來解決估計為0的情況。

文本分類

樸素貝葉斯分類器可以給出一個最有結果的猜測值,并給出估計概率。通常用于文本分類。
分類核心思想為選擇概率最大的類別。貝葉斯公式如下:

詞條:將每個詞出現的次數作為特征。
假設每個特征相互獨立,即每個詞相互獨立,不相關。則

完整代碼如下;

import numpy as np
import re
import feedparser
import operator
def loadDataSet():
 postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
     ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
     ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
     ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
     ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
     ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
 classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
 return postingList,classVec
 
def createVocabList(data): #創建詞向量
 returnList = set([])
 for subdata in data:
  returnList = returnList | set(subdata)
 return list(returnList)
 
 
def setofWords2Vec(vocabList,data):  #將文本轉化為詞條
 
 returnList = [0]*len(vocabList)
 for vocab in data:
  if vocab in vocabList:
   returnList[vocabList.index(vocab)] += 1
 return returnList
 
 
def trainNB0(trainMatrix,trainCategory):  #訓練,得到分類概率
 pAbusive = sum(trainCategory)/len(trainCategory)
 p1num = np.ones(len(trainMatrix[0]))
 p0num = np.ones(len(trainMatrix[0]))
 p1Denom = 2
 p0Denom = 2
 for i in range(len(trainCategory)):
  if trainCategory[i] == 1:
   p1num = p1num + trainMatrix[i]
   p1Denom = p1Denom + sum(trainMatrix[i])
  else:
   p0num = p0num + trainMatrix[i]
   p0Denom = p0Denom + sum(trainMatrix[i])
 p1Vect = np.log(p1num/p1Denom)
 p0Vect = np.log(p0num/p0Denom)
 return p0Vect,p1Vect,pAbusive
 
 
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): #分類
 p0 = sum(vec2Classify*p0Vec)+np.log(1-pClass1)
 p1 = sum(vec2Classify*p1Vec)+np.log(pClass1)
 if p1 > p0:
  return 1
 else:
  return 0
def textParse(bigString):   #文本解析
 splitdata = re.split(r'\W+',bigString)
 splitdata = [token.lower() for token in splitdata if len(token) > 2]
 return splitdata
def spamTest():
 docList = []
 classList = []
 for i in range(1,26):
  with open('spam/%d.txt'%i) as f:
   doc = f.read()
  docList.append(doc)
  classList.append(1)
  with open('ham/%d.txt'%i) as f:
   doc = f.read()
  docList.append(doc)
  classList.append(0)
 vocalList = createVocabList(docList)
 trainList = list(range(50))
 testList = []
 for i in range(13):
  num = int(np.random.uniform(0,len(docList))-10)
  testList.append(trainList[num])
  del(trainList[num])
 docMatrix = []
 docClass = []
 for i in trainList:
  subVec = setofWords2Vec(vocalList,docList[i])
  docMatrix.append(subVec)
  docClass.append(classList[i])
 p0v,p1v,pAb = trainNB0(docMatrix,docClass)
 errorCount = 0
 for i in testList:
  subVec = setofWords2Vec(vocalList,docList[i])
  if classList[i] != classifyNB(subVec,p0v,p1v,pAb):
   errorCount += 1
 return errorCount/len(testList)
 
def calcMostFreq(vocabList,fullText):
 count = {}
 for vocab in vocabList:
  count[vocab] = fullText.count(vocab)
 sortedFreq = sorted(count.items(),key=operator.itemgetter(1),reverse=True)
 return sortedFreq[:30]
 
def localWords(feed1,feed0):
 docList = []
 classList = []
 fullText = []
 numList = min(len(feed1['entries']),len(feed0['entries']))
 for i in range(numList):
  doc1 = feed1['entries'][i]['summary']
  docList.append(doc1)
  classList.append(1)
  fullText.extend(doc1)
  doc0 = feed0['entries'][i]['summary']
  docList.append(doc0)
  classList.append(0)
  fullText.extend(doc0)
 vocabList = createVocabList(docList)
 top30Words = calcMostFreq(vocabList,fullText)
 for word in top30Words:
  if word[0] in vocabList:
   vocabList.remove(word[0])
 trainingSet = list(range(2*numList))
 testSet = []
 for i in range(20):
  randnum = int(np.random.uniform(0,len(trainingSet)-5))
  testSet.append(trainingSet[randnum])
  del(trainingSet[randnum])
 trainMat = []
 trainClass = []
 for i in trainingSet:
  trainClass.append(classList[i])
  trainMat.append(setofWords2Vec(vocabList,docList[i]))
 p0V,p1V,pSpam = trainNB0(trainMat,trainClass)
 errCount = 0
 for i in testSet:
  testData = setofWords2Vec(vocabList,docList[i])
  if classList[i] != classifyNB(testData,p0V,p1V,pSpam):
   errCount += 1
 return errCount/len(testData)
if __name__=="__main__":
 ny = feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
 sf = feedparser.parse('http://sfbay.craigslist.org/stp/index.rss')
 print(localWords(ny,sf))

編程技巧:

1.兩個集合的并集

vocab = vocab | set(document)

2.創建元素全為零的向量

vec = [0]*10

以上就是本文的全部內容,希望對大家的學習有所幫助

數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢