熱線電話:13121318867

登錄
首頁精彩閱讀R語言使用邏輯回歸分類算法
R語言使用邏輯回歸分類算法
2018-01-15
收藏

R語言使用邏輯回歸分類算法

邏輯回歸屬于概率統計的分類算法模型的算法,是根據一個或者多個特征進行類別標號預測。在R語言中可以通過調用logit函數執行邏輯回歸分類算法并預測輸出概率。通過調用glm函數將family參數也就是響應分布指定為binominal(二項式),就是使用邏輯回歸算法。

操作
同進述內容一樣準備好訓練數據集與測試數據集。
fit = glm(churn ~ .,data = trainset,family = binomial)
summary(fit)
Call:
glm(formula = churn ~ ., family = binomial, data = trainset)

Deviance Residuals:
    Min       1Q   Median       3Q      Max  
-3.1519   0.1983   0.3460   0.5186   2.1284  

Coefficients:
                                Estimate Std. Error z value Pr(>|z|)    
(Intercept)                    8.3462866  0.8364914   9.978  < 2e-16 ***
international_plan1           -2.0534243  0.1726694 -11.892  < 2e-16 ***
voice_mail_plan1               1.3445887  0.6618905   2.031 0.042211 *  
number_vmail_messages         -0.0155101  0.0209220  -0.741 0.458496    
total_day_minutes              0.2398946  3.9168466   0.061 0.951163    
total_day_calls               -0.0014003  0.0032769  -0.427 0.669141    
total_day_charge              -1.4855284 23.0402950  -0.064 0.948592    
total_eve_minutes              0.3600678  1.9349825   0.186 0.852379    
total_eve_calls               -0.0028484  0.0033061  -0.862 0.388928    
total_eve_charge              -4.3204432 22.7644698  -0.190 0.849475    
total_night_minutes            0.4431210  1.0478105   0.423 0.672367    
total_night_calls              0.0003978  0.0033188   0.120 0.904588    
total_night_charge            -9.9162795 23.2836376  -0.426 0.670188    
total_intl_minutes             0.4587114  6.3524560   0.072 0.942435    
total_intl_calls               0.1065264  0.0304318   3.500 0.000464 ***
total_intl_charge             -2.0803428 23.5262100  -0.088 0.929538    
number_customer_service_calls -0.5109077  0.0476289 -10.727  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)
  Null deviance: 1938.8  on 2314  degrees of freedom
Residual deviance: 1515.3  on 2298  degrees of freedom
AIC: 1549.3

Number of Fisher Scoring iterations: 6

找到分類模型中包含的可能導致錯誤分類的非顯著變量,僅使用顯著的變量來訓練分類模型。

 fit = glm(churn ~ international_plan + voice_mail_plan + number_customer_service_calls,data = trainset,family = binomial)
summary(fit)

Call:
glm(formula = churn ~ international_plan + voice_mail_plan +
    number_customer_service_calls, family = binomial, data = trainset)

Deviance Residuals:
    Min       1Q   Median       3Q      Max  
-2.6485   0.3067   0.4500   0.5542   1.6509  

Coefficients:
                              Estimate Std. Error z value Pr(>|z|)    
(Intercept)                    2.68272    0.12064  22.237  < 2e-16 ***
international_plan1           -1.97626    0.15998 -12.353  < 2e-16 ***
voice_mail_plan1               0.79423    0.16352   4.857 1.19e-06 ***
number_customer_service_calls -0.44341    0.04445  -9.975  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 1938.8  on 2314  degrees of freedom
Residual deviance: 1678.5  on 2311  degrees of freedom
AIC: 1686.5

Number of Fisher Scoring iterations: 5
調用fit使用一個內置模型來預測testset數據集的輸出,可以通過調整概率是否高于0.5來改變類別標記的輸出結果。
#這是選擇預測之后的輸出結果,這個參數能用在binomial數據,也就是響應變量是二分型的時候,這個參數選成type=response,表示輸出結果預測響應變量為1的概率。
pred = predict(fit,testset,type = "response")
#將ped中概率大于0.5的設置TRUE,代表為“no”,沒有流失客戶,1
#將ped中概率小于0.5的設置FALSE,代表為“yes”,有流失
客戶,0
Class = pred > 0.5
summary(Class)
   Mode   FALSE    TRUE
logical      28     990

對測試數據集的分類和預測結果進行統計分析計數:

tb = table(testset$churn,Class)
> tb
     Class
      FALSE TRUE
  yes    15  126
  no     13  864
將上一步驟的統計結果用分類形式表輸出,并生成混淆矩陣

churn.mod = ifelse(testset$churn == "yes",1,0)
> churn.mod
   [1] 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
  [44] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
  [87] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
 [130] 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
 [173] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 [216] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
 [259] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0
 [302] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
 [345] 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 [388] 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
 [431] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
 [474] 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
 [517] 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
 [560] 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
 [603] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0
 [646] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
 [689] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0
 [732] 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 [775] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 [818] 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
 [861] 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [904] 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
 [947] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
 [990] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0

將Class轉化成numeric

ABC = as.numeric(Class)
ABC與churn.mod 中0,1代表的意思相反,將ABC進行數值取反

BC = 1 - ABC
計算混淆矩陣

confusionMatrix(churn.mod,BC)
Confusion Matrix and Statistics

          Reference
Prediction   0   1
         0 864  13
         1 126  15

               Accuracy : 0.8635         
                 95% CI : (0.8408, 0.884)
    No Information Rate : 0.9725         
    P-Value [Acc > NIR] : 1              

                  Kappa : 0.138          
 Mcnemar's Test P-Value : <2e-16         

            Sensitivity : 0.8727         
            Specificity : 0.5357         
         Pos Pred Value : 0.9852         
         Neg Pred Value : 0.1064         
             Prevalence : 0.9725         
         Detection Rate : 0.8487         
   Detection Prevalence : 0.8615         
      Balanced Accuracy : 0.7042         

       'Positive' Class : 0         

邏輯回歸算法和線性回歸非常相似,兩者區別是在于線性回歸算法中的變量是連續變量,而邏輯回歸響應變量是二分類的變量(名義變量),使用邏輯回歸算法主要目的是利用logit模型去預測和測量變量相關的名義變量的概率。邏輯回歸公式:ln(P/(1-P)),P為某事情發生的概率。

邏輯回歸的算法的優勢是在于算法易于理解,能夠直接輸出預測模型的邏輯概率邏輯值以及結果的置信區間,與決策樹難以更新模型不同,邏輯回歸算法能夠迅速在邏輯回歸算法中合并新的數據,更新分類模型,邏輯回歸算法的不足是無法處理多重共線性問題,因此解決變量必須線性無關。glm提供了一個通用的線性回歸模型,可以通過設置family參數得到,當為binomial回歸時,可以實現二元分類。

調用fit函數預測測試數據集testset的類別響應變量,fit函數能夠輸出類標號的概率,如果概率值小于等于0.5,意味預測得出的類標號與測試數據集的實際類標號不相符,如果大于0.5則說明兩者是一致的,進一步調用summsary函數來得到預測的模型。最后進行計數統計與混淆矩陣。

數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢