
Python多線程實現同步的四種方式
本篇文章主要介紹了Python多線程實現同步的四種方式,小編覺得挺不錯的,現在分享給大家,也給大家做個參考。
臨界資源即那些一次只能被一個線程訪問的資源,典型例子就是打印機,它一次只能被一個程序用來執行打印功能,因為不能多個線程同時操作,而訪問這部分資源的代碼通常稱之為臨界區。
鎖機制
threading的Lock類,用該類的acquire函數進行加鎖,用realease函數進行解鎖
import threading
import time
class Num:
def __init__(self):
self.num = 0
self.lock = threading.Lock()
def add(self):
self.lock.acquire()#加鎖,鎖住相應的資源
self.num += 1
num = self.num
self.lock.release()#解鎖,離開該資源
return num
n = Num()
class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item
def run(self):
time.sleep(2)
value = n.add()#將num加1,并輸出原來的數據和+1之后的數據
print(self.item,value)
for item in range(5):
t = jdThread(item)
t.start()
t.join()#使線程一個一個執行
當一個線程調用鎖的acquire()方法獲得鎖時,鎖就進入“locked”狀態。每次只有一個線程可以獲得鎖。如果此時另一個線程試圖獲得這個鎖,該線程就會變為“blocked”狀態,稱為“同步阻塞”(參見多線程的基本概念)。
直到擁有鎖的線程調用鎖的release()方法釋放鎖之后,鎖進入“unlocked”狀態。線程調度程序從處于同步阻塞狀態的線程中選擇一個來獲得鎖,并使得該線程進入運行(running)狀態。
信號量
信號量也提供acquire方法和release方法,每當調用acquire方法的時候,如果內部計數器大于0,則將其減1,如果內部計數器等于0,則會阻塞該線程,知道有線程調用了release方法將內部計數器更新到大于1位置。
import threading
import time
class Num:
def __init__(self):
self.num = 0
self.sem = threading.Semaphore(value = 3)
#允許最多三個線程同時訪問資源
def add(self):
self.sem.acquire()#內部計數器減1
self.num += 1
num = self.num
self.sem.release()#內部計數器加1
return num
n = Num()
class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item
def run(self):
time.sleep(2)
value = n.add()
print(self.item,value)
for item in range(100):
t = jdThread(item)
t.start()
t.join()
條件判斷
所謂條件變量,即這種機制是在滿足了特定的條件后,線程才可以訪問相關的數據。
它使用Condition類來完成,由于它也可以像鎖機制那樣用,所以它也有acquire方法和release方法,而且它還有wait,notify,notifyAll方法。
"""
一個簡單的生產消費者模型,通過條件變量的控制產品數量的增減,調用一次生產者產品就是+1,調用一次消費者產品就會-1.
"""
"""
使用 Condition 類來完成,由于它也可以像鎖機制那樣用,所以它也有 acquire 方法和 release 方法,而且它還有
wait, notify, notifyAll 方法。
"""
import threading
import queue,time,random
class Goods:#產品類
def __init__(self):
self.count = 0
def add(self,num = 1):
self.count += num
def sub(self):
if self.count>=0:
self.count -= 1
def empty(self):
return self.count <= 0
class Producer(threading.Thread):#生產者類
def __init__(self,condition,goods,sleeptime = 1):#sleeptime=1
threading.Thread.__init__(self)
self.cond = condition
self.goods = goods
self.sleeptime = sleeptime
def run(self):
cond = self.cond
goods = self.goods
while True:
cond.acquire()#鎖住資源
goods.add()
print("產品數量:",goods.count,"生產者線程")
cond.notifyAll()#喚醒所有等待的線程--》其實就是喚醒消費者進程
cond.release()#解鎖資源
time.sleep(self.sleeptime)
class Consumer(threading.Thread):#消費者類
def __init__(self,condition,goods,sleeptime = 2):#sleeptime=2
threading.Thread.__init__(self)
self.cond = condition
self.goods = goods
self.sleeptime = sleeptime
def run(self):
cond = self.cond
goods = self.goods
while True:
time.sleep(self.sleeptime)
cond.acquire()#鎖住資源
while goods.empty():#如無產品則讓線程等待
cond.wait()
goods.sub()
print("產品數量:",goods.count,"消費者線程")
cond.release()#解鎖資源
g = Goods()
c = threading.Condition()
pro = Producer(c,g)
pro.start()
con = Consumer(c,g)
con.start()
同步隊列
put方法和task_done方法,queue有一個未完成任務數量num,put依次num+1,task依次num-1.任務都完成時任務結束。
import threading
import queue
import time
import random
'''
1.創建一個 Queue.Queue() 的實例,然后使用數據對它進行填充。
2.將經過填充數據的實例傳遞給線程類,后者是通過繼承 threading.Thread 的方式創建的。
3.每次從隊列中取出一個項目,并使用該線程中的數據和 run 方法以執行相應的工作。
4.在完成這項工作之后,使用 queue.task_done() 函數向任務已經完成的隊列發送一個信號。
5.對隊列執行 join 操作,實際上意味著等到隊列為空,再退出主程序。
'''
class jdThread(threading.Thread):
def __init__(self,index,queue):
threading.Thread.__init__(self)
self.index = index
self.queue = queue
def run(self):
while True:
time.sleep(1)
item = self.queue.get()
if item is None:
break
print("序號:",self.index,"任務",item,"完成")
self.queue.task_done()#task_done方法使得未完成的任務數量-1
q = queue.Queue(0)
'''
初始化函數接受一個數字來作為該隊列的容量,如果傳遞的是
一個小于等于0的數,那么默認會認為該隊列的容量是無限的.
'''
for i in range(2):
jdThread(i,q).start()#兩個線程同時完成任務
for i in range(10):
q.put(i)#put方法使得未完成的任務數量+1
以上就是本文的全部內容,希望對大家的學習有所幫助
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25