
Python股票歷史數據的獲取
獲取股票數據的接口很多,免費的接口有新浪、網易、雅虎的API接口,收費的就是證券公司及相應的公司提供的接口。
收費試用的接口一般提供的數據只是最近一年或三年的,限制比較多,除非money足夠多。
所以本文主要討論的是免費數據的獲取及處理。
國內提供股票數據的接口如sinajs,money.163.com,yahoo,它們提供的API接口不同,每家提供的數據大同小異,可以選擇一家的數據來處理。
目前,國內有一個開源的財經數據獲取包,封裝了上述的接口,不需關系數據源從哪去,它會優先從最快的源來取數據。使用起來非常方便。它是TuShare,具體的安裝使用見鏈接。
本文基于TuShare的數據獲取基礎上開發,介紹如何獲取A股所有股票的歷史K線數據。
一、獲取A股上市公司列表
import tushare as ts
import pandas as pd
def download_stock_basic_info():
try:
df = ts.get_stock_basics()
#直接保存到csv
print 'choose csv'
df.to_csv('stock_basic_list.csv');
print 'download csv finish'
股票列表中包括當前A股的2756只股票的基本信息,包括:
code,代碼
name,名稱
industry,所屬行業
area,地區
pe,市盈率
outstanding,流通股本
totals,總股本(萬)
totalAssets,總資產(萬)
liquidAssets,流動資產
fixedAssets,固定資產
reserved,公積金
reservedPerShare,每股公積金
eps,每股收益
bvps,每股凈資
pb,市凈率
timeToMarket,上市日期
二、獲取單只股票的歷史K線
獲取的日K線數據包括:
date : 交易日期 (index)
open : 開盤價(前復權,默認)
high : 最高價(前復權,默認)
close : 收盤價(前復權,默認)
low : 最低價(前復權,默認)
open_nfq : 開盤價(不復權)
high_nfq : 最高價(不復權)
close_nfq : 收盤價(不復權)
low_nfq : 最低價(不復權)
open_hfq : 開盤價(后復權)
high_hfq : 最高價(后復權)
close_hfq : 收盤價(后復權)
low_hfq : 最低價(后復權)
volume : 成交量
amount : 成交金額
下載股票代碼為code的股票歷史K線,默認為上市日期到今天的K線數據,支持遞增下載,如本地已下載股票60000的數據到2015-6-19,再次運行則會從6.20開始下載,追加到本地csv文件中。
# 默認為上市日期到今天的K線數據
# 可指定開始、結束日期:格式為"2015-06-28"
def download_stock_kline(code, date_start='', date_end=datetime.date.today()):
code = util.getSixDigitalStockCode(code) # 將股票代碼格式化為6位數字
try:
fileName = 'h_kline_' + str(code) + '.csv'
writeMode = 'w'
if os.path.exists(cm.DownloadDir+fileName):
#print (">>exist:" + code)
df = pd.DataFrame.from_csv(path=cm.DownloadDir+fileName)
se = df.head(1).index #取已有文件的最近日期
dateNew = se[0] + datetime.timedelta(1)
date_start = dateNew.strftime("%Y-%m-%d")
#print date_start
writeMode = 'a'
if date_start == '':
se = get_stock_info(code)
date_start = se['timeToMarket']
date = datetime.datetime.strptime(str(date_start), "%Y%m%d")
date_start = date.strftime('%Y-%m-%d')
date_end = date_end.strftime('%Y-%m-%d')
# 已經是最新的數據
if date_start >= date_end:
df = pd.read_csv(cm.DownloadDir+fileName)
return df
print 'download ' + str(code) + ' k-line >>>begin (', date_start+u' 到 '+date_end+')'
df_qfq = ts.get_h_data(str(code), start=date_start, end=date_end) # 前復權
df_nfq = ts.get_h_data(str(code), start=date_start, end=date_end) # 不復權
df_hfq = ts.get_h_data(str(code), start=date_start, end=date_end) # 后復權
if df_qfq is None or df_nfq is None or df_hfq is None:
return None
df_qfq['open_no_fq'] = df_nfq['open']
df_qfq['high_no_fq'] = df_nfq['high']
df_qfq['close_no_fq'] = df_nfq['close']
df_qfq['low_no_fq'] = df_nfq['low']
df_qfq['open_hfq']=df_hfq['open']
df_qfq['high_hfq']=df_hfq['high']
df_qfq['close_hfq']=df_hfq['close']
df_qfq['low_hfq']=df_hfq['low']
if writeMode == 'w':
df_qfq.to_csv(cm.DownloadDir+fileName)
else:
df_old = pd.DataFrame.from_csv(cm.DownloadDir + fileName)
# 按日期由遠及近
df_old = df_old.reindex(df_old.index[::-1])
df_qfq = df_qfq.reindex(df_qfq.index[::-1])
df_new = df_old.append(df_qfq)
#print df_new
# 按日期由近及遠
df_new = df_new.reindex(df_new.index[::-1])
df_new.to_csv(cm.DownloadDir+fileName)
#df_qfq = df_new
print '\ndownload ' + str(code) + ' k-line finish'
return pd.read_csv(cm.DownloadDir+fileName)
except Exception as e:
print str(e)
return None
## private methods ##
#######################
# 獲取個股的基本信息:股票名稱,行業,地域,PE等,詳細如下
# code,代碼
# name,名稱
# industry,所屬行業
# area,地區
# pe,市盈率
# outstanding,流通股本
# totals,總股本(萬)
# totalAssets,總資產(萬)
# liquidAssets,流動資產
# fixedAssets,固定資產
# reserved,公積金
# reservedPerShare,每股公積金
# eps,每股收益
# bvps,每股凈資
# pb,市凈率
# timeToMarket,上市日期
# 返回值類型:Series
def get_stock_info(code):
try:
sql = "select * from %s where code='%s'" % (STOCK_BASIC_TABLE, code)
df = pd.read_sql_query(sql, engine)
se = df.ix[0]
except Exception as e:
print str(e)
return se
三、獲取所有股票的歷史K線
# 獲取所有股票的歷史K線
def download_all_stock_history_k_line():
print 'download all stock k-line'
try:
df = pd.DataFrame.from_csv(cm.DownloadDir + cm.TABLE_STOCKS_BASIC + '.csv')
pool = ThreadPool(processes=10)
pool.map(download_stock_kline, df.index)
pool.close()
pool.join()
except Exception as e:
print str(e)
print 'download all stock k-line'
Map來自函數語言Lisp,map函數能夠按序映射出另一個函數。
urls = ['http://www.yahoo.com', 'http://www.reddit.com']
results = map(urllib2.urlopen, urls)
有兩個能夠支持通過map函數來完成并行的庫:一個是multiprocessing,另一個是鮮為人知但功能強大的子文件:multiprocessing.dummy。
Dummy就是多進程模塊的克隆文件。唯一不同的是,多進程模塊使用的是進程,而dummy則使用線程(當然,它有所有Python常見的限制)。
通過指定processes的個數來調用多線程。
附:文中用到的其他函數及變量,定義如下:
TABLE_STOCKS_BASIC = 'stock_basic_list'
DownloadDir = os.path.pardir + '/stockdata/' # os.path.pardir: 上級目錄
# 補全股票代碼(6位股票代碼)
# input: int or string
# output: string
def getSixDigitalStockCode(code):
strZero = ''
for i in range(len(str(code)), 6):
strZero += '0'
return strZero + str(code)
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25