熱線電話:13121318867

登錄
首頁精彩閱讀初學者如何從零學習人工智能
初學者如何從零學習人工智能
2018-02-28
收藏

初學者如何從零學習人工智能

此文是想要進入人工智能這個領域、但不知道從哪里開始的初學者最佳的學習資源列表。

一、機器學習

有關機器學習領域的最佳介紹,請觀看Coursera的Andrew Ng機器學習課程。 它解釋了基本概念,并讓你很好地理解最重要的算法。

有關ML算法的簡要概述,查看這個TutsPlus課程“Machine Learning Distilled”。

“Programming Collective Intelligence”這本書是一個很好的資源,可以學習ML 算法在Python中的實際實現。 它需要你通過許多實踐項目,涵蓋所有必要的基礎。

這些不錯的資源你可能也感興趣:

1、Perer Norvig 的Udacity Course on ML(ML Udacity 課程)

2、Tom Mitchell 在卡梅隆大學教授的 Another course on ML(另一門ML程)

3、YouTube上的機器學習教程 mathematicalmonk

二、深度學習

關于深度學習的最佳介紹,我遇到最好的是 Deep Learning With Python。它不會深入到困難的數學,也沒有一個超長列表的先決條件,而是描述了一個簡單的方法開始DL,解釋如何快速開始構建并學習實踐上的一切。它解釋了最先進的工具(Keras,TensorFlow),并帶你通過幾個實際項目,解釋如何在所有最好的DL應用程序中實現最先進的結果。

在Google上也有一個great introductory DL course,還有Sephen Welch的great explanation of neural networks。

之后,為了更深入地了解,這里還有一些有趣的資源:

1、Geoffrey Hinton 的coursera 課程“Neural Networks for Machine Learning”。這門課程會帶你了解 ANN 的經典問題——MNIST 字符識別的過程,并將深入解釋一切。

2、MIT Deep Learning(深度學習)一書。

3、UFLDL tutorial by Stanford (斯坦福的 UFLDL 教程)

4、deeplearning.net教程 

5、Michael Nielsen 的 Neural Networks and Deep Learning(神經網絡深度學習)一書

6、Simon O. Haykin 的Neural Networks and Learning Machines (神經網絡機器學習)一書

三、人工智能

“Artificial Intelligence: A Modern Approach (AIMA)” (人工智能:現代方法) 是關于“守舊派” AI最好的一本書籍。這本書總體概述了人工智能領域,并解釋了你需要了解的所有基本概念。

來自加州大學伯克利分校的 Artificial Intelligence course(人工智能課程)是一系列優秀的視頻講座,通過一種非常有趣的實踐項目(訓練AI玩Pacman游戲 )來解釋基本知識。我推薦在視頻的同時可以一起閱讀AIMA,因為它是基于這本書,并從不同的角度解釋了很多類似的概念,使他們更容易理解。它的講解相對較深,對初學者來說是非常不錯的資源。

大腦如何工作

如果你對人工智能感興趣,你可能很想知道人的大腦是怎么工作的,下面的幾本書會通過直觀有趣的方式來解釋最好的現代理論。

1、Jeff Hawkins 的 On Intelligence(有聲讀物)

2、G?del, Escher, Bach

我建議通過這兩本書入門,它們能很好地向你解釋大腦工作的一般理論。

其他資源:

Ray Kurzweil的 How to Create a Mind (如何創建一個頭腦Ray Kurzweil) (有聲讀物).

Principles of Neural Science (神經科學原理)是我能找到的最好的書,深入NS。 它談論的是核心科學,神經解剖等。 非常有趣,但也很長 – 我還在讀它。

四、數學

以下是你開始學習AI需要了解的非?;镜臄祵W概念:

微積分學

1、Khan Academy Calculus videos(可汗學院微積分視頻)

2、MIT lectures on Multivariable Calculus(MIT關于多變量微積分的講座)

線性代數

1、Khan Academy Linear Algebra videos(可汗學院線性代數視頻)

2、MIT linear algebra videos by Gilbert Strang(Gilbert Strang的MIT線性代數視頻)

3、Coding the Matrix?(編碼矩陣) – 布朗大學線程代數CS課程

概率和統計

1、可汗學院 Probability(概率)與 Statistics(統計)視頻

2、edx probability course (edx概率課程)

五、計算機科學

要掌握AI,你要熟悉計算機科學和編程。

如果你剛剛開始,我建議閱讀 Dive Into Python 3 (深入Python 3)這本書,你在Python編程中所需要的大部分知識都會提到。

要更深入地了解計算機編程的本質 – 看這個經典的 MIT course (MIT課程)。這是一門關于lisp和計算機科學的基礎的課程,基于 CS -結構和計算機程序的解釋中最有影響力的書之一。

六、其他資源

Metacademy? – 是你知識的“包管理器”。 你可以使用這個偉大的工具來了解你需要學習不同的ML主題的所有先決條件。

kaggle? – 機器學習平臺

數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢