
對大數據的全方位解讀
大數據是當下非?;鸨囊粋€詞,人人都在談論大數據。但大數據的定義是什么?它到底是如何出現的?它有什么特別之處?它最大的應用領域在哪里?它的發展方向是什么?對于以上問題,其實大多數人是弄不清楚的。
1)大數據時代出現的必然性
大數據和云計算這兩個詞經常被同時提到,很多人誤以為大數據和云計算是同時誕生的、具有強綁定關系。其實這兩者之間既有關聯性,也有區別。云計算指的是一種以互聯網方式來提供服務的計算模式,而大數據指的是基于多源異構、跨域關聯的海量數據分析所產生的決策流程、商業模式、科學范式、生活方式和關聯形態上的顛覆性變化的總和。大數據處理會利用到云計算領域的很多技術,但大數據并非完全依賴于云計算;反過來,云計算之上也并非只有大數據這一種應用。
云計算的起源可以追溯到 2003 年末 Amazon 公司工程師 Chris Pinkham 提交給 CEO Jeff Bezos
的一篇論文中的一個設想:將 Amazon 內部使用的計算基礎設施開放給全世界的開發者。次年 11 月,Amazon
發布了第一版云計算服務:Simple
Queue Service。Simple Queue Service 再往后發展至 2006 年,演變成立今天著名的 AWS(Amazon
Web Sercice)。同在 2006 年,Google 公司 CEO Eric Schmidt 首次公開提出了“云計算”(Cloud
Computing)的這一概念,云計算也在這一年開始變得廣為人知。
大數據這個詞的流行卻晚了好幾年——直到 2009
年,大數據這個說法才逐漸開始在互聯網圈內傳播。但僅僅在互聯網領域流行,仍然不足以引起普遍關注,因為純互聯網經濟畢竟只占全球經濟總量的很小一部分。而大數據概念真正變得火爆,卻是因為美國奧巴馬政府在
2012 年高調宣布了其“大數據研究和開發計劃”——美國政府希望利用大數據解決一些政府部門面臨的非常重要的問題,該計劃由橫跨 6 個政府部門的
84 個子課題組成。這標志著大數據真正開始進入主流的傳統線下經濟。
大數據出現的時間點自有它深刻的原因。2009 年至 2012
年這段時間正是電子商務在包括中國在內的全球全面開花的幾年。眾所周知,互聯網領域有 3 大類商業模式:廣告、游戲和電子商務。而電子商務又是第 1
個真正將純互聯網經濟與傳統經濟嫁接在一起誕生的混合模式。準確地說,正是互聯網與傳統經濟的碰撞,才真正催生出了今天幾乎全民關注的“大數據”。大數據橫跨了互聯網產業與傳統產業,而且大數據真正廣闊的應用領域其實也正是比純互聯網經濟大得多的傳統產業。
從數據量的角度來看,在電子商務模式出現以前,傳統企業的數量增長緩慢。傳統企業的數據倉庫中的數據大多數來自于交易型數據,而交易這種行為處于用戶消費決策漏斗的最底部,這就決定了交易前的各種瀏覽、搜索、比較等用戶行為數據的都量遠遠超過交易數據。電子商務模式使得企業可以采集到用戶的瀏覽、搜索、比較等行為,這就導致企業的數據規至少提升了一個數量級?,F在日益流行的移動互聯網以及將來會流行的物聯網又必將使數據量提高兩三個數量級。從這個角度來講,大數據時代是必然會出現的。
從IT產業的發展來看,第一代IT巨頭大多是 2B 的,比如 IBM、Microsoft、Oracle、SAP
這類傳統IT企業;第二代IT巨頭大多是 2C 的,比如 Yahoo、Google、Amazon、Facebook
這類互聯網企業。一個有意思的現象是:大數據時代前,這兩類公司彼此之間基本是井水不犯河水,我們很少看見這兩類公司的老板們在一起坐而論道;但在當前這個大數據時代,這兩類公司已經開始直接競爭。比如
Amazon 已經開始提供云模式的數據倉庫服務,直接搶占 IBM、Oracle
的市場。這個現象出現的本質原因是:在互聯網巨頭的帶動下,傳統IT巨頭的客戶普遍開始從事電子商務業務,正是由于客戶進入了互聯網,所以傳統IT巨頭們不情愿地被拖入了互聯網領域。如果他們不進入互聯網,他們業務必將萎縮。所以第三代IT巨頭可能會是
2B 與 2C 融合的IT公司。
2)大數據的核心內涵
大數據概念雖然非?;鸨?,但少有人真正理解大數據的核心內容。一個普遍而且嚴重的誤解就是:大數據= 數據大,即大數據就是量大的數據。事實上,除了數據量大這個字面意義,大數據還有兩個更重要的特征:
1) 跨領域數據的交叉融合。相同領域數據量的增加是加法效應,不同領域數據的融合是乘法效應
2) 數據的流動。數據必須流動,流動產生價值
對于第 1) 點,百分點推薦系統研究中心實驗結果顯示:百分點公司有 3 家客戶,分別是從事服裝、化妝品和箱包銷售的電商,百分點向這 3
家客戶提供個性化商品推薦服務,即:百分點挖掘用戶的偏好,不同的用戶上同一家電商網站時,向他們展現不同的服裝、化妝品或箱包,從而提高電商的轉化率和客單價。我們做過兩種測試:
a) 將每家網站的數據隔離。當每家網站自身的數據量增加到以前的 4 倍時,推薦效果大約能提高 5%;
b) 將三家網站的數據在去除敏感信息之后進行某種融合。融合后的數據大致是與單家網站的數據的 3
倍,比第一種情況數據量還少。但利用融合后的數據進行數據挖掘時,推薦效果能提升
30%,而且推薦商品并未發生變化,仍然是:用戶上服飾類網站時只看見服裝、上化妝品網站時只看見化妝品、上箱包網站時只看見箱包。
解釋得詳細一點,上述實驗說明:對同一個消費者,如果我們要向其推薦服裝。第一種方法是我們根據他過去的 4
次購買服裝的行為來預測其下一次可能會購買的服飾;第二種方法是我們根據他過去分別購買服裝、化妝品和箱包的各 1
次行為來預測其下一次可能會購買的服飾。兩種方法的基于的用戶行數分別是 4 次和 3 次,但第二種方法的效果明顯更好。
對于第
2) 點,其實 10
多年前傳統企業開始做數據倉庫時,數據倉庫從業者經常強調一個觀點:企業級數據倉庫的目標是讓不同部門的數據流動起來,各個部門數據割裂,數據的價值就得不到發揮。到了今天的互聯網時代,我們發現即使企業已經打通了內部各個部門之間的數據,但與整個互聯網比起來,數據量仍然微乎其微,數據應該以互聯網為媒介在企業之間某種形式的流動。參照“企業級數據倉庫”的概念,現在已經開始出現了“互聯網數據倉庫”的概念:就是企業通過互聯網渠道將與自己相關的外部數據與內部數據進行整合,從而形成“互聯網數據倉庫”。百分點已經在零售與媒體領域比較成功地打造了“開放數據聯盟”,該聯盟的成員可以在公允、安全的情況下基于該聯盟建立起自己的“互聯網數據倉庫”,從而享用海量數據的價值。
3)大數據的應用領域
大數據的起源要歸功于互聯網與電子商務,但大數據最大的應用前景卻在傳統產業。一是因為幾乎所有傳統產業都在互聯網化,二是因為傳統產業仍然占據了國家 GDP 的絕大部分份額。
哪些傳統企業最需要大數據服務呢?至少有 3 類企業:
1) 對大量消費者提供產品或服務的企業
2) 做小而美模式的中長尾企業
3) 面臨互聯網壓力之下必須轉型的傳統企業
第 1) 類企業都需要利用大數據精準分析不同消費者的偏好,提高營銷和服務的質量;第 1)
類企業都需要利用大數據分析精準定位自己的客戶群;第 3)
類企業主要指哪些正在遭受來自互聯網的新玩家沖擊的傳統企業,此類企業自然都需要利用互聯網和大數據作為自我進化的工具。當然,第 3) 類企業與前 2
類企業有重疊。
具體來講,中國最需要大數據服務的行業就是受互聯網沖擊最大的產業,首先是線下零售業,其次是金融業。
受電商的沖擊,國內很多零售巨頭都增長嚴重放緩,甚至遭遇負增長,線下零售已經到了不得不變革的危機關頭。我們也看到了銀泰百貨、王府井百貨、萬達集團這些具有創新意識的傳統巨頭開始利用互聯網和大數據來改造線下商業。其中銀泰百貨以手機為載體、利用
O2O 方式進行雙線數據挖掘的創新非常值得借鑒。
而金融行業就更加特殊:金融業并不銷售任何實體商品,它自誕生起就是基于數據的產業。由于國家管制,金融業在前幾年享受了非常好的政策紅利,內部變革動力不足。而目前金融業已經逐漸開始放松管制,新興的金融機構必將利用互聯網以及大數據工具向傳統金融巨頭發起猛烈攻擊。而傳統金融機構在互聯網方面的技術積累和數據積累都不足,要快速應對新進入者的挑戰,必然需要大數據服務。我們也看到了中信銀行信用卡中心、招商銀行信用卡中心已經在開始利用互聯網大數據進行創新。
那么傳統產業需要什么樣的大數據服務呢?這主要包括 3 層:
1) 基于大數據的行業垂直應用。每個行業都有自己的特點,所以自然會存在行業應用的需求;
2) 顧客標簽與商品標簽的整理。不管什么行業,都需要精細化整理自己顧客的屬性標簽以及商品屬性標簽,而且這些標簽必須能夠細化到單個顧客和單個商品。標簽是行業應用的基礎;
3) 企業內部和外部數據的整合與管理。要給顧客和商品打標簽,首先必須整合企業內部和外部數據,尤其是日益重要和龐大的外部數據。
圖:傳統企業需要的大數據服務
第 3 層和第 2 層的方法相對比較通用,行業特殊性相對較少。百分點已經在第 3 層和第 2 層做出了比較成熟的產品,并且也開始在第 1 層做出了一些具體的行業應用產品,比如針對服飾行業的時尚服飾搭配系統。
4)大數據的發展方向
大數據產業未來會向什么方向發展?隨著數據逐漸成為企業的一種資產,數據產業會向傳統企業的供應鏈模式發展,最終形成“數據供應鏈”。拿鋼鐵產業來講,鐵礦石公司從礦場中挖出礦石,經過粗加工,賣給鋼鐵企業;鋼鐵企業再進行精細一點的加工,將板材、鋼條賣給下游制造業公司;這些制造業公司做出汽車、飛機、門窗、電腦等產品賣給下游公司。這個產業鏈中存在找礦、運輸、加工等諸多環節,每個環節都有對應的企業。
圖:傳統企業的供應鏈
在“數據供應鏈”中,存在數據、數據整合與挖掘工具以及數據應用這 3
大環節。數據就好比礦場的礦石;數據整合與挖掘工具就好比鋼廠的冶煉爐;而精準營銷、服飾搭配等數據應用就好比汽車、電腦等可以出售給消費者的產品。企業在數據供應、數據整合與挖掘、數據應用等所有環節都需要專業的服務。這里尤其有兩個明顯的現象:
1) 外部數據的重要性日益超過內部數據。在互聯互通的互聯網時代,單一企業的內部數據與整個互聯網數據比較起來只是滄海一粟;
2) 能提供包括數據供應、數據整合與加工、數據應用等多環節服務的公司會有明顯的綜合競爭優勢。
5) 什么樣的大數據企業會勝出
常有大數據從業者以及投資人和我們探討一個問題:大數據產業中,什么樣的企業會最終勝出?這是一個很難回答的問題,而且即使回答了,三五年內可能都無法判斷其正確性。但從“數據供應鏈”中的各個環節來分析,還是可以得出一些具有參考價值的結論。
1)
數據供應。在互聯網沒有流行的時代,企業做數據倉庫、商業智能、數據挖掘等系統時采用的數據基本都來自于企業內部,企業幾乎無法獲取外部數據,所以很少有專業的數據供應商?;ヂ摼W改變了這一局面,將來會有專業的數據供應商。但既然是因為互聯網的出現導致了數據供應商的出現,那么反過來數據供應商就必須具有很強的互聯網基因;
2)
數據整合與挖掘。數據挖掘工具供應商在非互聯網時代就早已存在。但互聯網時代使得企業的數據量激增、數據類型發生極大變化(不同于傳統的來自于單一領域的結構化數據,互聯網數據以跨域的非結構化數據為主),傳統的數據挖掘工具供應商的技術和方法已經很難適應。要跟上時代的變化,數據挖掘技術與工具應用商必須具備互聯網公司的海量數據處理和挖掘的能力;
3) 數據應用。具體的行業應用與傳統行業的業務關系密切,要做好行業應用,最好需要有服務傳統行業的經驗,了解傳統行業的內部運作模式。這時候僅僅具有 2C 經驗的互聯網基因的公司又稍顯不足。
綜合起來看,如果一家大數據從業公司同時兼備互聯網數據獲取能力、互聯網技術、互聯網執行力,又有做 2B 服務的經驗,那么這家公司將比較容易取得領先優勢。這個結論其實一點也不奇怪:如本文開篇所述,大數據本來就是互聯網與傳統產業碰撞時的產物。
用“方興未艾”這個詞來形容大數據產業的發展階段都還為時過早,目前的大數據產業只能說是小荷才露尖尖角。國內企業在第 1
代IT產業(硬件和軟件產業)中是明顯落后國外企業的;在第 2
代IT產業(互聯網產業)中,國內企業已經與國外企業差距不大甚至在很多方面超過了國外企業;希望在第 3
代IT產業(云計算和大數據)浪潮中,國內企業能夠完全趕上并且超過國外企業,我們也認為這是很有可能的。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25