熱線電話:13121318867

登錄
首頁精彩閱讀小姐姐帶你一起學:如何用Python實現7種機器學習算法(附代碼)
小姐姐帶你一起學:如何用Python實現7種機器學習算法(附代碼)
2018-04-04
收藏

小姐姐帶你一起學:如何用Python實現7種機器學習算法(附代碼)

Python 被稱為是最接近 AI 的語言。最近一位名叫Anna-Lena Popkes的小姐姐在GitHub上分享了自己如何使用Python(3.6及以上版本)實現7種機器學習算法的筆記,并附有完整代碼。所有這些算法的實現都沒有使用其他機器學習庫。這份筆記可以幫大家對算法以及其底層結構有個基本的了解,但并不是提供最有效的實現。

小姐姐她是德國波恩大學計算機科學專業的研究生,主要關注機器學習神經網絡。

七種算法包括:

  • 線性回歸算法
  • Logistic 回歸算法
  • 感知器
  • K 最近鄰算法
  • K 均值聚類算法
  • 含單隱層的神經網絡
  • 多項式的 Logistic 回歸算法

▌1. 線性回歸算法

線性回歸中,我們想要建立一個模型,來擬合一個因變量 y 與一個或多個獨立自變量(預測變量) x 之間的關系。

給定:

  • 數據集
  • 是d-維向量
  • 是一個目標變量,它是一個標量

線性回歸模型可以理解為一個非常簡單的神經網絡

  • 它有一個實值加權向量
  • 它有一個實值偏置量 b
  • 它使用恒等函數作為其激活函數

線性回歸模型可以使用以下方法進行訓練

a) 梯度下降法

b) 正態方程(封閉形式解):

其中 X 是一個矩陣,其形式為,包含所有訓練樣本的維度信息。

而正態方程需要計算的轉置。這個操作的計算復雜度介于)和之間,而這取決于所選擇的實現方法。因此,如果訓練集中數據的特征數量很大,那么使用正態方程訓練的過程將變得非常緩慢。

線性回歸模型的訓練過程有不同的步驟。首先(在步驟 0 中),模型的參數將被初始化。在達到指定訓練次數或參數收斂前,重復以下其他步驟。

第 0 步:

用0 (或小的隨機值)來初始化權重向量和偏置量,或者直接使用正態方程計算模型參數

第 1 步(只有在使用梯度下降法訓練時需要):

計算輸入的特征與權重值的線性組合,這可以通過矢量化和矢量傳播來對所有訓練樣本進行處理:

其中 X 是所有訓練樣本的維度矩陣,其形式為;· 表示點積。

第 2 步(只有在使用梯度下降法訓練時需要):

用均方誤差計算訓練集上的損失:

第 3 步(只有在使用梯度下降法訓練時需要):

對每個參數,計算其對損失函數的偏導數:

所有偏導數的梯度計算如下:

第 4 步(只有在使用梯度下降法訓練時需要):

更新權重向量和偏置量:

其中,表示學習率。

In [4]:

import numpy as npimport matplotlib.pyplot as pltfrom sklearn.model_selection import train_test_splitnp.random.seed(123)

數據集

In [5]:

# We will use a simple training setX = 2 * np.random.rand(500, 1)y = 5 + 3 * X + np.random.randn(500, 1)fig = plt.figure(figsize=(8,6))plt.scatter(X, y)plt.title("Dataset")plt.xlabel("First feature")plt.ylabel("Second feature")plt.show()

In [6]:

# Split the data into a training and test setX_train, X_test, y_train, y_test = train_test_split(X, y)print(f'Shape X_train: {X_train.shape}')print(f'Shape y_train: {y_train.shape}')print(f'Shape X_test: {X_test.shape}')print(f'Shape y_test: {y_test.shape}')

Shape X_train: (375, 1)Shape y_train: (375, 1)Shape X_test: (125, 1)Shape y_test: (125, 1)

線性回歸分類

In [23]:

class LinearRegression: def __init__(self): pass def train_gradient_descent(self, X, y, learning_rate=0.01, n_iters=100): """ Trains a linear regression model using gradient descent """ # Step 0: Initialize the parameters n_samples, n_features = X.shape self.weights = np.zeros(shape=(n_features,1)) self.bias = 0 costs = [] for i in range(n_iters): # Step 1: Compute a linear combination of the input features and weights y_predict = np.dot(X, self.weights) + self.bias # Step 2: Compute cost over training set cost = (1 / n_samples) * np.sum((y_predict - y)**2) costs.append(cost) if i % 100 == 0: print(f"Cost at iteration {i}: {cost}") # Step 3: Compute the gradients dJ_dw = (2 / n_samples) * np.dot(X.T, (y_predict - y)) dJ_db = (2 / n_samples) * np.sum((y_predict - y)) # Step 4: Update the parameters self.weights = self.weights - learning_rate * dJ_dw self.bias = self.bias - learning_rate * dJ_db return self.weights, self.bias, costs def train_normal_equation(self, X, y): """ Trains a linear regression model using the normal equation """ self.weights = np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y) self.bias = 0 return self.weights, self.bias def predict(self, X): return np.dot(X, self.weights) + self.bias

使用梯度下降進行訓練

In [24]:

regressor = LinearRegression()w_trained, b_trained, costs = regressor.train_gradient_descent(X_train, y_train, learning_rate=0.005, n_iters=600)fig = plt.figure(figsize=(8,6))plt.plot(np.arange(n_iters), costs)plt.title("Development of cost during training")plt.xlabel("Number of iterations")plt.ylabel("Cost")plt.show()

Cost at iteration 0: 66.45256981003433Cost at iteration 100: 2.2084346146095934Cost at iteration 200: 1.2797812854182806Cost at iteration 300: 1.2042189195356685Cost at iteration 400: 1.1564867816573Cost at iteration 500: 1.121391041394467

測試(梯度下降模型)

In [28]:

n_samples, _ = X_train.shapen_samples_test, _ = X_test.shapey_p_train = regressor.predict(X_train)y_p_test = regressor.predict(X_test)error_train = (1 / n_samples) * np.sum((y_p_train - y_train) ** 2)error_test = (1 / n_samples_test) * np.sum((y_p_test - y_test) ** 2)print(f"Error on training set: {np.round(error_train, 4)}")print(f"Error on test set: {np.round(error_test)}")

Error on training set: 1.0955

Error on test set: 1.0

使用正規方程(normal equation)訓練

# To compute the parameters using the normal equation, we add a bias value of 1 to each input exampleX_b_train = np.c_[np.ones((n_samples)), X_train]X_b_test = np.c_[np.ones((n_samples_test)), X_test]reg_normal = LinearRegression()w_trained = reg_normal.train_normal_equation(X_b_train, y_train)

測試(正規方程模型)

y_p_train = reg_normal.predict(X_b_train)y_p_test = reg_normal.predict(X_b_test)error_train = (1 / n_samples) * np.sum((y_p_train - y_train) ** 2)error_test = (1 / n_samples_test) * np.sum((y_p_test - y_test) ** 2)print(f"Error on training set: {np.round(error_train, 4)}")print(f"Error on test set: {np.round(error_test, 4)}")

Error on training set: 1.0228

Error on test set: 1.0432

可視化測試預測

# Plot the test predictionsfig = plt.figure(figsize=(8,6))plt.scatter(X_train, y_train)plt.scatter(X_test, y_p_test)plt.xlabel("First feature")plt.ylabel("Second feature")plt.show()

▌2. Logistic 回歸算法

在 Logistic 回歸中,我們試圖對給定輸入特征的線性組合進行建模,來得到其二元變量的輸出結果。例如,我們可以嘗試使用競選候選人花費的金錢和時間信息來預測選舉的結果(勝或負)。Logistic 回歸算法的工作原理如下。

給定:

  • 數據集
  • 是d-維向量
  • 是一個二元的目標變量

Logistic 回歸模型可以理解為一個非常簡單的神經網絡

  • 它有一個實值加權向量
  • 它有一個實值偏置量 b
  • 它使用 sigmoid 函數作為其激活函數

線性回歸不同,Logistic 回歸沒有封閉解。但由于損失函數是凸函數,因此我們可以使用梯度下降法來訓練模型。事實上,在保證學習速率足夠小且使用足夠的訓練迭代步數的前提下,梯度下降法(或任何其他優化算法)可以是能夠找到全局最小值。

訓練 Logistic 回歸模型有不同的步驟。首先(在步驟 0 中),模型的參數將被初始化。在達到指定訓練次數或參數收斂前,重復以下其他步驟。

第 0 步:用 0 (或小的隨機值)來初始化權重向量和偏置值

第 1 步:計算輸入的特征與權重值的線性組合,這可以通過矢量化和矢量傳播來對所有訓練樣本進行處理:

其中 X 是所有訓練樣本的維度矩陣,其形式為;·表示點積。

第 2 步:用 sigmoid 函數作為激活函數,其返回值介于0到1之間:

第 3 步:計算整個訓練集的損失值。

我們希望模型得到的目標值概率落在 0 到 1 之間。因此在訓練期間,我們希望調整參數,使得模型較大的輸出值對應正標簽(真實標簽為 1),較小的輸出值對應負標簽(真實標簽為 0 )。這在損失函數中表現為如下形式:

第 4 步:對權重向量和偏置量,計算其對損失函數的梯度。

關于這個導數實現的詳細解釋,可以參見這里(https://stats.stackexchange.com/questions/278771/how-is-the-cost-function-from-logistic-regression-derivated)。

一般形式如下:

對于偏置量的導數計算,此時為 1。

第 5 步:更新權重和偏置值。

其中,表示學習率。

In [24]:

import numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.datasets import make_blobsimport matplotlib.pyplot as pltnp.random.seed(123)% matplotlib inline

數據集

In [25]:

# We will perform logistic regression using a simple toy dataset of two classesX, y_true = make_blobs(n_samples= 1000, centers=2)fig = plt.figure(figsize=(8,6))plt.scatter(X[:,0], X[:,1], c=y_true)plt.title("Dataset")plt.xlabel("First feature")plt.ylabel("Second feature")plt.show()

In [26]:

# Reshape targets to get column vector with shape (n_samples, 1)y_true = y_true[:, np.newaxis]# Split the data into a training and test setX_train, X_test, y_train, y_test = train_test_split(X, y_true)print(f'Shape X_train: {X_train.shape}')print(f'Shape y_train: {y_train.shape}')print(f'Shape X_test: {X_test.shape}')print(f'Shape y_test: {y_test.shape}')

Shape X_train: (750, 2)

Shape y_train: (750, 1)

Shape X_test: (250, 2)

Shape y_test: (250, 1)

Logistic回歸分類

In [27]:

class LogisticRegression: def __init__(self): pass def sigmoid(self, a): return 1 / (1 + np.exp(-a)) def train(self, X, y_true, n_iters, learning_rate): """ Trains the logistic regression model on given data X and targets y """ # Step 0: Initialize the parameters n_samples, n_features = X.shape self.weights = np.zeros((n_features, 1)) self.bias = 0 costs = [] for i in range(n_iters): # Step 1 and 2: Compute a linear combination of the input features and weights, # apply the sigmoid activation function y_predict = self.sigmoid(np.dot(X, self.weights) + self.bias) # Step 3: Compute the cost over the whole training set. cost = (- 1 / n_samples) * np.sum(y_true * np.log(y_predict) + (1 - y_true) * (np.log(1 - y_predict))) # Step 4: Compute the gradients dw = (1 / n_samples) * np.dot(X.T, (y_predict - y_true)) db = (1 / n_samples) * np.sum(y_predict - y_true) # Step 5: Update the parameters self.weights = self.weights - learning_rate * dw self.bias = self.bias - learning_rate * db costs.append(cost) if i % 100 == 0: print(f"Cost after iteration {i}: {cost}") return self.weights, self.bias, costs def predict(self, X): """ Predicts binary labels for a set of examples X. """ y_predict = self.sigmoid(np.dot(X, self.weights) + self.bias) y_predict_labels = [1 if elem > 0.5 else 0 for elem in y_predict] return np.array(y_predict_labels)[:, np.newaxis]

初始化并訓練模型

In [29]:

regressor = LogisticRegression()w_trained, b_trained, costs = regressor.train(X_train, y_train, n_iters=600, learning_rate=0.009)fig = plt.figure(figsize=(8,6))plt.plot(np.arange(600), costs)plt.title("Development of cost over training")plt.xlabel("Number of iterations")plt.ylabel("Cost")plt.show()

Cost after iteration 0: 0.6931471805599453

Cost after iteration 100: 0.046514002935609956

Cost after iteration 200: 0.02405337743999163

Cost after iteration 300: 0.016354408151412207

Cost after iteration 400: 0.012445770521974634

Cost after iteration 500: 0.010073981792906512

測試模型

In [31]:

y_p_train = regressor.predict(X_train)y_p_test = regressor.predict(X_test)print(f"train accuracy: {100 - np.mean(np.abs(y_p_train - y_train)) * 100}%")print(f"test accuracy: {100 - np.mean(np.abs(y_p_test - y_test))}%")

train accuracy: 100.0%

test accuracy: 100.0%

▌3. 感知器算法

感知器是一種簡單的監督式的機器學習算法,也是最早的神經網絡體系結構之一。它由 Rosenblatt 在 20 世紀 50 年代末提出。感知器是一種二元的線性分類器,其使用 d- 維超平面來將一組訓練樣本( d- 維輸入向量)映射成二進制輸出值。它的原理如下:

給定:

  • 數據集
  • 是d-維向量
  • 是一個目標變量,它是一個標量

感知器可以理解為一個非常簡單的神經網絡

  • 它有一個實值加權向量
  • 它有一個實值偏置量 b
  • 它使用 Heaviside step 函數作為其激活函數

感知器的訓練可以使用梯度下降法,訓練算法有不同的步驟。首先(在步驟0中),模型的參數將被初始化。在達到指定訓練次數或參數收斂前,重復以下其他步驟。

第 0 步:用 0 (或小的隨機值)來初始化權重向量和偏置值

第 1 步:計算輸入的特征與權重值的線性組合,這可以通過矢量化和矢量傳播法則來對所有訓練樣本進行處理:

其中 X 是所有訓練示例的維度矩陣,其形式為;·表示點積。

第 2 步:用 Heaviside step 函數作為激活函數,其返回一個二進制值:

第 3 步:使用感知器的學習規則來計算權重向量和偏置量的更新值。

其中,表示學習率。

第 4 步:更新權重向量和偏置量。

In [1]:

import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import make_blobsfrom sklearn.model_selection import train_test_splitnp.random.seed(123)% matplotlib inline

數據集

In [2]:

X, y = make_blobs(n_samples=1000, centers=2)fig = plt.figure(figsize=(8,6))plt.scatter(X[:,0], X[:,1], c=y)plt.title("Dataset")plt.xlabel("First feature")plt.ylabel("Second feature")plt.show()

In [3]:

y_true = y[:, np.newaxis]X_train, X_test, y_train, y_test = train_test_split(X, y_true)print(f'Shape X_train: {X_train.shape}')print(f'Shape y_train: {y_train.shape})')print(f'Shape X_test: {X_test.shape}')print(f'Shape y_test: {y_test.shape}')

Shape X_train: (750, 2)

Shape y_train: (750, 1))

Shape X_test: (250, 2)

Shape y_test: (250, 1)

感知器分類

In [6]:

class Perceptron(): def __init__(self): pass def train(self, X, y, learning_rate=0.05, n_iters=100): n_samples, n_features = X.shape # Step 0: Initialize the parameters self.weights = np.zeros((n_features,1)) self.bias = 0 for i in range(n_iters): # Step 1: Compute the activation a = np.dot(X, self.weights) + self.bias # Step 2: Compute the output y_predict = self.step_function(a) # Step 3: Compute weight updates delta_w = learning_rate * np.dot(X.T, (y - y_predict)) delta_b = learning_rate * np.sum(y - y_predict) # Step 4: Update the parameters self.weights += delta_w self.bias += delta_b return self.weights, self.bias def step_function(self, x): return np.array([1 if elem >= 0 else 0 for elem in x])[:, np.newaxis] def predict(self, X): a = np.dot(X, self.weights) + self.bias return self.step_function(a)

初始化并訓練模型

In [7]:

p = Perceptron()w_trained, b_trained = p.train(X_train, y_train,learning_rate=0.05, n_iters=500)

測試

In [10]:

y_p_train = p.predict(X_train)y_p_test = p.predict(X_test)print(f"training accuracy: {100 - np.mean(np.abs(y_p_train - y_train)) * 100}%")print(f"test accuracy: {100 - np.mean(np.abs(y_p_test - y_test)) * 100}%")

training accuracy: 100.0%

test accuracy: 100.0%

可視化決策邊界

In [13]:

def plot_hyperplane(X, y, weights, bias): """ Plots the dataset and the estimated decision hyperplane """ slope = - weights[0]/weights[1] intercept = - bias/weights[1] x_hyperplane = np.linspace(-10,10,10) y_hyperplane = slope * x_hyperplane + intercept fig = plt.figure(figsize=(8,6)) plt.scatter(X[:,0], X[:,1], c=y) plt.plot(x_hyperplane, y_hyperplane, '-') plt.title("Dataset and fitted decision hyperplane") plt.xlabel("First feature") plt.ylabel("Second feature") plt.show()

In [14]:

plot_hyperplane(X, y, w_trained, b_trained)

▌4. K 最近鄰算法

k-nn 算法是一種簡單的監督式的機器學習算法,可以用于解決分類和回歸問題。這是一個基于實例的算法,并不是估算模型,而是將所有訓練樣本存儲在內存中,并使用相似性度量進行預測。

給定一個輸入示例,k-nn 算法將從內存中檢索 k 個最相似的實例。相似性是根據距離來定義的,也就是說,與輸入示例之間距離最小(歐幾里得距離)的訓練樣本被認為是最相似的樣本。

輸入示例的目標值計算如下:

分類問題:

a) 不加權:輸出 k 個最近鄰中最常見的分類

b) 加權:將每個分類值的k個最近鄰的權重相加,輸出權重最高的分類

回歸問題:

a) 不加權:輸出k個最近鄰值的平均值

b) 加權:對于所有分類值,將分類值加權求和并將結果除以所有權重的總和

加權版本的 k-nn 算法是改進版本,其中每個近鄰的貢獻值根據其與查詢點之間的距離進行加權。下面,我們在 sklearn 用 k-nn 算法的原始版本實現數字數據集的分類。

In [1]:

import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import load_digitsfrom sklearn.model_selection import train_test_splitnp.random.seed(123)% matplotlib inline

數據集

In [2]:

# We will use the digits dataset as an example. It consists of the 1797 images of hand-written digits. Each digit is# represented by a 64-dimensional vector of pixel values.digits = load_digits()X, y = digits.data, digits.targetX_train, X_test, y_train, y_test = train_test_split(X, y)print(f'X_train shape: {X_train.shape}')print(f'y_train shape: {y_train.shape}')print(f'X_test shape: {X_test.shape}')print(f'y_test shape: {y_test.shape}')# Example digitsfig = plt.figure(figsize=(10,8))for i in range(10): ax = fig.add_subplot(2, 5, i+1) plt.imshow(X[i].reshape((8,8)), cmap='gray')

X_train shape: (1347, 64)

y_train shape: (1347,)

X_test shape: (450, 64)

y_test shape: (450,)

K 最鄰近類別

In [3]:

class kNN(): def __init__(self): pass def fit(self, X, y): self.data = X self.targets = y def euclidean_distance(self, X): """ Computes the euclidean distance between the training data and a new input example or matrix of input examples X """ # input: single data point if X.ndim == 1: l2 = np.sqrt(np.sum((self.data - X)**2, axis=1)) # input: matrix of data points if X.ndim == 2: n_samples, _ = X.shape l2 = [np.sqrt(np.sum((self.data - X[i])**2, axis=1)) for i in range(n_samples)] return np.array(l2) def predict(self, X, k=1): """ Predicts the classification for an input example or matrix of input examples X """ # step 1: compute distance between input and training data dists = self.euclidean_distance(X) # step 2: find the k nearest neighbors and their classifications if X.ndim == 1: if k == 1: nn = np.argmin(dists) return self.targets[nn] else: knn = np.argsort(dists)[:k] y_knn = self.targets[knn] max_vote = max(y_knn, key=list(y_knn).count) return max_vote if X.ndim == 2: knn = np.argsort(dists)[:, :k] y_knn = self.targets[knn] if k == 1: return y_knn.T else: n_samples, _ = X.shape max_votes = [max(y_knn[i], key=list(y_knn[i]).count) for i in range(n_samples)] return max_votes

初始化并訓練模型

In [11]:

knn = kNN()knn.fit(X_train, y_train)print("Testing one datapoint, k=1")print(f"Predicted label: {knn.predict(X_test[0], k=1)}")print(f"True label: {y_test[0]}")print()print("Testing one datapoint, k=5")print(f"Predicted label: {knn.predict(X_test[20], k=5)}")print(f"True label: {y_test[20]}")print()print("Testing 10 datapoint, k=1")print(f"Predicted labels: {knn.predict(X_test[5:15], k=1)}")print(f"True labels: {y_test[5:15]}")print()print("Testing 10 datapoint, k=4")print(f"Predicted labels: {knn.predict(X_test[5:15], k=4)}")print(f"True labels: {y_test[5:15]}")print()

Testing one datapoint, k=1

Predicted label: 3

True label: 3

Testing one datapoint, k=5

Predicted label: 9

True label: 9

Testing 10 datapoint, k=1

Predicted labels: [[3 1 0 7 4 0 0 5 1 6]]

True labels: [3 1 0 7 4 0 0 5 1 6]

Testing 10 datapoint, k=4

Predicted labels: [3, 1, 0, 7, 4, 0, 0, 5, 1, 6]

True labels: [3 1 0 7 4 0 0 5 1 6]

測試集精度

In [12]:

# Compute accuracy on test sety_p_test1 = knn.predict(X_test, k=1)test_acc1= np.sum(y_p_test1[0] == y_test)/len(y_p_test1[0]) * 100print(f"Test accuracy with k = 1: {format(test_acc1)}")y_p_test8 = knn.predict(X_test, k=5)test_acc8= np.sum(y_p_test8 == y_test)/len(y_p_test8) * 100print(f"Test accuracy with k = 8: {format(test_acc8)}")

Test accuracy with k = 1: 97.77777777777777

Test accuracy with k = 8: 97.55555555555556

▌5. K均值聚類算法

K-Means 是一種非常簡單的聚類算法(聚類算法都屬于無監督學習)。給定固定數量的聚類和輸入數據集,該算法試圖將數據劃分為聚類,使得聚類內部具有較高的相似性,聚類與聚類之間具有較低的相似性。

算法原理

1. 初始化聚類中心,或者在輸入數據范圍內隨機選擇,或者使用一些現有的訓練樣本(推薦)

2. 直到收斂

  • 將每個數據點分配到最近的聚類。點與聚類中心之間的距離是通過歐幾里德距離測量得到的。
  • 通過將聚類中心的當前估計值設置為屬于該聚類的所有實例的平均值,來更新它們的當前估計值。

目標函數

聚類算法的目標函數試圖找到聚類中心,以便數據將劃分到相應的聚類中,并使得數據與其最接近的聚類中心之間的距離盡可能小。

給定一組數據X1,...,Xn和一個正數k,找到k個聚類中心C1,...,Ck并最小化目標函數:

這里:

  • 決定了數據點是否屬于類
  • 表示類的聚類中心
  • 表示歐幾里得距離

K-Means 算法的缺點:

  • 聚類的個數在開始就要設定
  • 聚類的結果取決于初始設定的聚類中心
  • 對異常值很敏感
  • 不適合用于發現非凸聚類問題
  • 該算法不能保證能夠找到全局最優解,因此它往往會陷入一個局部最優解

In [21]:

import numpy as npimport matplotlib.pyplot as pltimport randomfrom sklearn.datasets import make_blobsnp.random.seed(123)% matplotlib inline

數據集

In [22]:

X, y = make_blobs(centers=4, n_samples=1000)print(f'Shape of dataset: {X.shape}')fig = plt.figure(figsize=(8,6))plt.scatter(X[:,0], X[:,1], c=y)plt.title("Dataset with 4 clusters")plt.xlabel("First feature")plt.ylabel("Second feature")plt.show()

Shape of dataset: (1000, 2)

K均值分類

In [23]:

class KMeans(): def __init__(self, n_clusters=4): self.k = n_clusters def fit(self, data): """ Fits the k-means model to the given dataset """ n_samples, _ = data.shape # initialize cluster centers self.centers = np.array(random.sample(list(data), self.k)) self.initial_centers = np.copy(self.centers) # We will keep track of whether the assignment of data points # to the clusters has changed. If it stops changing, we are # done fitting the model old_assigns = None n_iters = 0 while True: new_assigns = [self.classify(datapoint) for datapoint in data] if new_assigns == old_assigns: print(f"Training finished after {n_iters} iterations!") return old_assigns = new_assigns n_iters += 1 # recalculate centers for id_ in range(self.k): points_idx = np.where(np.array(new_assigns) == id_) datapoints = data[points_idx] self.centers[id_] = datapoints.mean(axis=0) def l2_distance(self, datapoint): dists = np.sqrt(np.sum((self.centers - datapoint)**2, axis=1)) return dists def classify(self, datapoint): """ Given a datapoint, compute the cluster closest to the datapoint. Return the cluster ID of that cluster. """ dists = self.l2_distance(datapoint) return np.argmin(dists) def plot_clusters(self, data): plt.figure(figsize=(12,10)) plt.title("Initial centers in black, final centers in red") plt.scatter(data[:, 0], data[:, 1], marker='.', c=y) plt.scatter(self.centers[:, 0], self.centers[:,1], c='r') plt.scatter(self.initial_centers[:, 0], self.initial_centers[:,1], c='k') plt.show()

初始化并調整模型

kmeans = KMeans(n_clusters=4)kmeans.fit(X)

Training finished after 4 iterations!

描繪初始和最終的聚類中心

kmeans.plot_clusters(X)

▌6. 簡單的神經網絡

在這一章節里,我們將實現一個簡單的神經網絡架構,將 2 維的輸入向量映射成二進制輸出值。我們的神經網絡有 2 個輸入神經元,含 6 個隱藏神經元隱藏層及 1 個輸出神經元。

我們將通過層之間的權重矩陣來表示神經網絡結構。在下面的例子中,輸入層和隱藏層之間的權重矩陣將被表示為,隱藏層和輸出層之間的權重矩陣為。除了連接神經元的權重向量外,每個隱藏和輸出的神經元都會有一個大小為 1 的偏置量。

我們的訓練集由 m = 750 個樣本組成。因此,我們的矩陣維度如下:

  • 訓練集維度: X = (750,2)
  • 目標維度: Y = (750,1)
  • 維度:(m,nhidden) = (2,6)
  • 維度:(bias vector):(1,nhidden) = (1,6)
  • 維度: (nhidden,noutput)= (6,1)
  • 維度:(bias vector):(1,noutput) = (1,1)

損失函數

我們使用與 Logistic 回歸算法相同的損失函數

對于多類別的分類任務,我們將使用這個函數的通用形式作為損失函數,稱之為分類交叉熵函數。

訓練

我們將用梯度下降法來訓練我們的神經網絡,并通過反向傳播法來計算所需的偏導數。訓練過程主要有以下幾個步驟:

1. 初始化參數(即權重量和偏差量)

2. 重復以下過程,直到收斂:

  • 通過網絡傳播當前輸入的批次大小,并計算所有隱藏和輸出單元的激活值和輸出值。
  • 針對每個參數計算其對損失函數的偏導數
  • 更新參數

前向傳播過程

首先,我們計算網絡中每個單元的激活值和輸出值。為了加速這個過程的實現,我們不會單獨為每個輸入樣本執行此操作,而是通過矢量化對所有樣本一次性進行處理。其中:

  • 表示對所有訓練樣本激活隱層單元的矩陣
  • 表示對所有訓練樣本輸出隱層單位的矩陣

隱層神經元將使用 tanh 函數作為其激活函數:

輸出層神經元將使用 sigmoid 函數作為激活函數:

激活值和輸出值計算如下(·表示點乘):

反向傳播過程

為了計算權重向量的更新值,我們需要計算每個神經元對損失函數的偏導數。這里不會給出這些公式的推導,你會在其他網站上找到很多更好的解釋(https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/)。

對于輸出神經元,梯度計算如下(矩陣符號):

對于輸入和隱層的權重矩陣,梯度計算如下:

權重更新

In [3]:

import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom sklearn.datasets import make_circlesfrom sklearn.model_selection import train_test_splitnp.random.seed(123)% matplotlib inline

數據集

In [4]:

X, y = make_circles(n_samples=1000, factor=0.5, noise=.1)fig = plt.figure(figsize=(8,6))plt.scatter(X[:,0], X[:,1], c=y)plt.xlim([-1.5, 1.5])plt.ylim([-1.5, 1.5])plt.title("Dataset")plt.xlabel("First feature")plt.ylabel("Second feature")plt.show()

In [5]:

# reshape targets to get column vector with shape (n_samples, 1)y_true = y[:, np.newaxis]# Split the data into a training and test setX_train, X_test, y_train, y_test = train_test_split(X, y_true)print(f'Shape X_train: {X_train.shape}')print(f'Shape y_train: {y_train.shape}')print(f'Shape X_test: {X_test.shape}')print(f'Shape y_test: {y_test.shape}')

Shape X_train: (750, 2)

Shape y_train: (750, 1)

Shape X_test: (250, 2)

Shape y_test: (250, 1)

Neural Network Class

以下部分實現受益于吳恩達的課程

https://www.coursera.org/learn/neural-networks-deep-learning

class NeuralNet(): def __init__(self, n_inputs, n_outputs, n_hidden): self.n_inputs = n_inputs self.n_outputs = n_outputs self.hidden = n_hidden # Initialize weight matrices and bias vectors self.W_h = np.random.randn(self.n_inputs, self.hidden) self.b_h = np.zeros((1, self.hidden)) self.W_o = np.random.randn(self.hidden, self.n_outputs) self.b_o = np.zeros((1, self.n_outputs)) def sigmoid(self, a): return 1 / (1 + np.exp(-a)) def forward_pass(self, X): """ Propagates the given input X forward through the net. Returns: A_h: matrix with activations of all hidden neurons for all input examples O_h: matrix with outputs of all hidden neurons for all input examples A_o: matrix with activations of all output neurons for all input examples O_o: matrix with outputs of all output neurons for all input examples """ # Compute activations and outputs of hidden units A_h = np.dot(X, self.W_h) + self.b_h O_h = np.tanh(A_h) # Compute activations and outputs of output units A_o = np.dot(O_h, self.W_o) + self.b_o O_o = self.sigmoid(A_o) outputs = { "A_h": A_h, "A_o": A_o, "O_h": O_h, "O_o": O_o, } return outputs def cost(self, y_true, y_predict, n_samples): """ Computes and returns the cost over all examples """ # same cost function as in logistic regression cost = (- 1 / n_samples) * np.sum(y_true * np.log(y_predict) + (1 - y_true) * (np.log(1 - y_predict))) cost = np.squeeze(cost) assert isinstance(cost, float) return cost def backward_pass(self, X, Y, n_samples, outputs): """ Propagates the errors backward through the net. Returns: dW_h: partial derivatives of loss function w.r.t hidden weights db_h: partial derivatives of loss function w.r.t hidden bias dW_o: partial derivatives of loss function w.r.t output weights db_o: partial derivatives of loss function w.r.t output bias """ dA_o = (outputs["O_o"] - Y) dW_o = (1 / n_samples) * np.dot(outputs["O_h"].T, dA_o) db_o = (1 / n_samples) * np.sum(dA_o) dA_h = (np.dot(dA_o, self.W_o.T)) * (1 - np.power(outputs["O_h"], 2)) dW_h = (1 / n_samples) * np.dot(X.T, dA_h) db_h = (1 / n_samples) * np.sum(dA_h) gradients = { "dW_o": dW_o, "db_o": db_o, "dW_h": dW_h, "db_h": db_h, } return gradients def update_weights(self, gradients, eta): """ Updates the model parameters using a fixed learning rate """ self.W_o = self.W_o - eta * gradients["dW_o"] self.W_h = self.W_h - eta * gradients["dW_h"] self.b_o = self.b_o - eta * gradients["db_o"] self.b_h = self.b_h - eta * gradients["db_h"] def train(self, X, y, n_iters=500, eta=0.3): """ Trains the neural net on the given input data """ n_samples, _ = X.shape for i in range(n_iters): outputs = self.forward_pass(X) cost = self.cost(y, outputs["O_o"], n_samples=n_samples) gradients = self.backward_pass(X, y, n_samples, outputs) if i % 100 == 0: print(f'Cost at iteration {i}: {np.round(cost, 4)}') self.update_weights(gradients, eta) def predict(self, X): """ Computes and returns network predictions for given dataset """ outputs = self.forward_pass(X) y_pred = [1 if elem >= 0.5 else 0 for elem in outputs["O_o"]] return np.array(y_pred)[:, np.newaxis]

初始化并訓練神經網絡

nn = NeuralNet(n_inputs=2, n_hidden=6, n_outputs=1)print("Shape of weight matrices and bias vectors:")print(f'W_h shape: {nn.W_h.shape}')print(f'b_h shape: {nn.b_h.shape}')print(f'W_o shape: {nn.W_o.shape}')print(f'b_o shape: {nn.b_o.shape}')print()print("Training:")nn.train(X_train, y_train, n_iters=2000, eta=0.7)

Shape of weight matrices and bias vectors:

W_h shape: (2, 6)

b_h shape: (1, 6)

W_o shape: (6, 1)

b_o shape: (1, 1)

Training:

Cost at iteration 0: 1.0872

Cost at iteration 100: 0.2723

Cost at iteration 200: 0.1712

Cost at iteration 300: 0.1386

Cost at iteration 400: 0.1208

Cost at iteration 500: 0.1084

Cost at iteration 600: 0.0986

Cost at iteration 700: 0.0907

Cost at iteration 800: 0.0841

Cost at iteration 900: 0.0785

Cost at iteration 1000: 0.0739

Cost at iteration 1100: 0.0699

Cost at iteration 1200: 0.0665

Cost at iteration 1300: 0.0635

Cost at iteration 1400: 0.061

Cost at iteration 1500: 0.0587

Cost at iteration 1600: 0.0566

Cost at iteration 1700: 0.0547

Cost at iteration 1800: 0.0531

Cost at iteration 1900: 0.0515

測試神經網絡

n_test_samples, _ = X_test.shapey_predict = nn.predict(X_test)print(f"Classification accuracy on test set: {(np.sum(y_predict == y_test)/n_test_samples)*100} %")

Classification accuracy on test set: 98.4 %

可視化決策邊界

X_temp, y_temp = make_circles(n_samples=60000, noise=.5)y_predict_temp = nn.predict(X_temp)y_predict_temp = np.ravel(y_predict_temp)

fig = plt.figure(figsize=(8,12))ax = fig.add_subplot(2,1,1)plt.scatter(X[:,0], X[:,1], c=y)plt.xlim([-1.5, 1.5])plt.ylim([-1.5, 1.5])plt.xlabel("First feature")plt.ylabel("Second feature")plt.title("Training and test set")ax = fig.add_subplot(2,1,2)plt.scatter(X_temp[:,0], X_temp[:,1], c=y_predict_temp)plt.xlim([-1.5, 1.5])plt.ylim([-1.5, 1.5])plt.xlabel("First feature")plt.ylabel("Second feature")plt.title("Decision boundary")

Out[11]:Text(0.5,1,'Decision boundary')

▌7. Softmax 回歸算法

Softmax 回歸算法,又稱為多項式或多類別的 Logistic 回歸算法。

給定:

  • 數據集
  • 是d-維向量
  • 是對應于的目標變量,例如對于K=3分類問題,

Softmax 回歸模型有以下幾個特點:

  • 對于每個類別,都存在一個獨立的、實值加權向量
  • 這個權重向量通常作為權重矩陣中的行。
  • 對于每個類別,都存在一個獨立的、實值偏置量b
  • 它使用 softmax 函數作為其激活函數
  • 它使用交叉熵( cross-entropy )作為損失函數

訓練 Softmax 回歸模型有不同步驟。首先(在步驟0中),模型的參數將被初始化。在達到指定訓練次數或參數收斂前,重復以下其他步驟。

第 0 步:用 0 (或小的隨機值)來初始化權重向量和偏置值

第 1 步:對于每個類別k,計算其輸入的特征與權重值的線性組合,也就是說為每個類別的訓練樣本計算一個得分值。對于類別k,輸入向量為,則得分值的計算如下:

其中表示類別k的權重矩陣,·表示點積。

我們可以通過矢量化和矢量傳播法則計算所有類別及其訓練樣本的得分值:

其中 X 是所有訓練樣本的維度矩陣,W 表示每個類別的權重矩陣維度,其形式為;

第 2 步:用 softmax 函數作為激活函數,將得分值轉化為概率值形式。屬于類別 k 的輸入向量的概率值為:

同樣地,我們可以通過矢量化來對所有類別同時處理,得到其概率輸出。模型預測出的表示的是該類別的最高概率。

第 3 步:計算整個訓練集的損失值。

我們希望模型預測出的高概率值是目標類別,而低概率值表示其他類別。這可以通過以下的交叉熵損失函數來實現:

在上面公式中,目標類別標簽表示成獨熱編碼形式( one-hot )。因此為1時表示的目標類別是 k,反之則為 0。

第 4 步:對權重向量和偏置量,計算其對損失函數的梯度。

關于這個導數實現的詳細解釋,可以參見這里(http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/)。

一般形式如下:

對于偏置量的導數計算,此時為1。

第 5 步:對每個類別k,更新其權重和偏置值。

其中,表示學習率。

In [1]:

from sklearn.datasets import load_irisimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.datasets import make_blobsimport matplotlib.pyplot as pltnp.random.seed(13)

數據集

In [2]:

X, y_true = make_blobs(centers=4, n_samples = 5000)fig = plt.figure(figsize=(8,6))plt.scatter(X[:,0], X[:,1], c=y_true)plt.title("Dataset")plt.xlabel("First feature")plt.ylabel("Second feature")plt.show()

In [3]:

# reshape targets to get column vector with shape (n_samples, 1)y_true = y_true[:, np.newaxis]# Split the data into a training and test setX_train, X_test, y_train, y_test = train_test_split(X, y_true)print(f'Shape X_train: {X_train.shape}')print(f'Shape y_train: {y_train.shape}')print(f'Shape X_test: {X_test.shape}')print(f'Shape y_test: {y_test.shape}')

Shape X_train: (3750, 2)

Shape y_train: (3750, 1)

Shape X_test: (1250, 2)

Shape y_test: (1250, 1)

Softmax回歸分類

class SoftmaxRegressor: def __init__(self): pass def train(self, X, y_true, n_classes, n_iters=10, learning_rate=0.1): """ Trains a multinomial logistic regression model on given set of training data """ self.n_samples, n_features = X.shape self.n_classes = n_classes self.weights = np.random.rand(self.n_classes, n_features) self.bias = np.zeros((1, self.n_classes)) all_losses = [] for i in range(n_iters): scores = self.compute_scores(X) probs = self.softmax(scores) y_predict = np.argmax(probs, axis=1)[:, np.newaxis] y_one_hot = self.one_hot(y_true) loss = self.cross_entropy(y_one_hot, probs) all_losses.append(loss) dw = (1 / self.n_samples) * np.dot(X.T, (probs - y_one_hot)) db = (1 / self.n_samples) * np.sum(probs - y_one_hot, axis=0) self.weights = self.weights - learning_rate * dw.T self.bias = self.bias - learning_rate * db if i % 100 == 0: print(f'Iteration number: {i}, loss: {np.round(loss, 4)}') return self.weights, self.bias, all_losses def predict(self, X): """ Predict class labels for samples in X. Args: X: numpy array of shape (n_samples, n_features) Returns: numpy array of shape (n_samples, 1) with predicted classes """ scores = self.compute_scores(X) probs = self.softmax(scores) return np.argmax(probs, axis=1)[:, np.newaxis] def softmax(self, scores): """ Tranforms matrix of predicted scores to matrix of probabilities Args: scores: numpy array of shape (n_samples, n_classes) with unnormalized scores Returns: softmax: numpy array of shape (n_samples, n_classes) with probabilities """ exp = np.exp(scores) sum_exp = np.sum(np.exp(scores), axis=1, keepdims=True) softmax = exp / sum_exp return softmax def compute_scores(self, X): """ Computes class-scores for samples in X Args: X: numpy array of shape (n_samples, n_features) Returns: scores: numpy array of shape (n_samples, n_classes) """ return np.dot(X, self.weights.T) + self.bias def cross_entropy(self, y_true, scores): loss = - (1 / self.n_samples) * np.sum(y_true * np.log(scores)) return loss def one_hot(self, y): """ Tranforms vector y of labels to one-hot encoded matrix """ one_hot = np.zeros((self.n_samples, self.n_classes)) one_hot[np.arange(self.n_samples), y.T] = 1 return one_hot

初始化并訓練模型

regressor = SoftmaxRegressor()w_trained, b_trained, loss = regressor.train(X_train, y_train, learning_rate=0.1, n_iters=800, n_classes=4)fig = plt.figure(figsize=(8,6))plt.plot(np.arange(800), loss)plt.title("Development of loss during training")plt.xlabel("Number of iterations")plt.ylabel("Loss")plt.show()Iteration number: 0, loss: 1.393

Iteration number: 100, loss: 0.2051

Iteration number: 200, loss: 0.1605

Iteration number: 300, loss: 0.1371

Iteration number: 400, loss: 0.121

數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢