
python分治法求二維數組局部峰值方法
下面小編就為大家分享一篇python分治法求二維數組局部峰值方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
題目的意思大致是在一個n*m的二維數組中,找到一個局部峰值。峰值要求大于相鄰的四個元素(數組邊界以外視為負無窮),比如最后我們找到峰值A[j][i],則有A[j][i] > A[j+1][i] && A[j][i] > A[j-1][i] && A[j][i] > A[j][i+1] && A[j][i] > A[j][i-1]。返回該峰值的坐標和值。
當然,最簡單直接的方法就是遍歷所有數組元素,判斷是否為峰值,時間復雜度為O(n^2)
再優化一點求每一行(列)的最大值,再通過二分法找最大值列的峰值(具體方法可見一維數組求峰值),這種算法時間復雜度為O(logn)
這里討論的是一種復雜度為O(n)的算法,算法思路分為以下幾步:
1、找“田”字。包括外圍的四條邊和中間橫豎兩條邊(圖中綠色部分),比較其大小,找到最大值的位置。(圖中的7)
2、找到田字中最大值后,判斷它是不是局部峰值,如果是返回該坐標,如果不是,記錄找到相鄰四個點中最大值坐標。通過該坐標所在的象限縮小范圍,繼續比較下一個田字
3、當范圍縮小到3*3時必定會找到局部峰值(也可能之前就找到了)
關于為什么我們選擇的范圍內一定存在峰值,大家可以這樣想,首先我們有一個圈,我們已知有圈內至少有一個元素大于這個圈所有的元素,那么,是不是這個圈中一定有一個最大值?
可能說得有點繞,但是多想想應該能夠理解,也可以用數學的反證法來證明。
算法我們理解后接下來就是代碼實現了,這里我用的語言是python(初學python,可能有些用法上不夠簡潔請見諒),先上代碼:
import numpy as np
def max_sit(*n): #返回最大元素的位置
temp = 0
sit = 0
for i in range(len(n)):
if(n[i]>temp):
temp = n[i]
sit = i
return sit
def dp(s1,s2,e1,e2):
m1 = int((e1-s1)/2)+s1 #row
m2 = int((e2-s1)/2)+s2 #col
nub = e1-s1
temp = 0
sit_row = 0
sit_col = 0
for i in range(nub):
t = max_sit(list[s1][s2+i], #第一排
list[m1][s2+i], #中間排
list[e1][s2+i], #最后排
list[s1+i][s2], #第一列
list[s1+i][m2], #中間列
list[s1+i][e2], #最后列
temp)
if(t==6):
pass
elif(t==0):
temp = list[s1][s2+i]
sit_row = s1
sit_col = s2+i
elif(t==1):
temp = list[m1][s2+i]
sit_row = m1
sit_col = s2+i
elif(t==2):
temp = list[e1][s2+i]
sit_row = e1
sit_col = s2+i
elif(t==3):
temp = list[s1+i][s2]
sit_row = s1+i
sit_row = s2
elif(t==4):
temp = list[s1+i][m2]
sit_row = s1+i
sit_col = m2
elif(t==5):
temp = list[s1+i][e2]
sit_row = s1+i
sit_col = m2
t = max_sit(list[sit_row][sit_col], #中
list[sit_row-1][sit_col], #上
list[sit_row+1][sit_col], #下
list[sit_row][sit_col-1], #左
list[sit_row][sit_col+1]) #右
if(t==0):
return [sit_row-1,sit_col-1]
elif(t==1):
sit_row-=1
elif(t==2):
sit_row+=1
elif(t==3):
sit_col-=1
elif(t==4):
sit_col+=1
if(sit_row<m1):
e1 = m1
else:
s1 = m1
if(sit_col<m2):
e2 = m2
else:
s2 = m2
return dp(s1,s2,e1,e2)
f = open("demo.txt","r")
list = f.read()
list = list.split("\n") #對行進行切片
list = ["0 "*len(list)]+list+["0 "*len(list)] #加上下的圍墻
for i in range(len(list)): #對列進行切片
list[i] = list[i].split()
list[i] = ["0"]+list[i]+["0"] #加左右的圍墻
list = np.array(list).astype(np.int32)
row_n = len(list)
col_n = len(list[0])
ans_sit = dp(0,0,row_n-1,col_n-1)
print("找到峰值點位于:",ans_sit)
print("該峰值點大小為:",list[ans_sit[0]+1,ans_sit[1]+1])
f.close()
首先我的輸入寫在txt文本文件里,通過字符串轉換變為二維數組,具體轉換過程可以看我上一篇博客——python中字符串轉換為二維數組。(需要注意的是如果在windows環境中split后的列表沒有空尾巴,所以不用加list.pop()這句話)。有的變動是我在二維數組四周加了“0”的圍墻。加圍墻可以再我們判斷峰值的時候不用考慮邊界問題。
max_sit(*n)函數用于找到多個值中最大值的位置,返回其位置,python的內構的max函數只能返回最大值,所以還是需要自己寫,*n表示不定長參數,因為我需要在比較田和十(判斷峰值)都用到這個函數
def max_sit(*n): #返回最大元素的位置
temp = 0
sit = 0
for i in range(len(n)):
if(n[i]>temp):
temp = n[i]
sit = i
return sit
dp(s1,s2,e1,e2)函數中四個參數的分別可看為startx,starty,endx,endy。即我們查找范圍左上角和右下角的坐標值。
m1,m2分別是row 和col的中間值,也就是田字的中間。
def dp(s1,s2,e1,e2):
m1 = int((e1-s1)/2)+s1 #row
m2 = int((e2-s1)/2)+s2 #col
依次比較3行3列中的值找到最大值,注意這里要求二維數組為正方形,如果為矩形需要做調整
for i in range(nub):
t = max_sit(list[s1][s2+i], #第一排
list[m1][s2+i], #中間排
list[e1][s2+i], #最后排
list[s1+i][s2], #第一列
list[s1+i][m2], #中間列
list[s1+i][e2], #最后列
temp)
if(t==6):
pass
elif(t==0):
temp = list[s1][s2+i]
sit_row = s1
sit_col = s2+i
elif(t==1):
temp = list[m1][s2+i]
sit_row = m1
sit_col = s2+i
elif(t==2):
temp = list[e1][s2+i]
sit_row = e1
sit_col = s2+i
elif(t==3):
temp = list[s1+i][s2]
sit_row = s1+i
sit_row = s2
elif(t==4):
temp = list[s1+i][m2]
sit_row = s1+i
sit_row = m2
elif(t==5):
temp = list[s1+i][e2]
sit_row = s1+i
sit_row = m2
判斷田字中最大值是不是峰值,并找不出相鄰最大值
t = max_sit(list[sit_row][sit_col], #中
list[sit_row-1][sit_col], #上
list[sit_row+1][sit_col], #下
list[sit_row][sit_col-1], #左
list[sit_row][sit_col+1]) #右
if(t==0):
return [sit_row-1,sit_col-1]
elif(t==1):
sit_row-=1
elif(t==2):
sit_row+=1
elif(t==3):
sit_col-=1
elif(t==4):
sit_col+=1
縮小范圍,遞歸求解
if(sit_row<m1):
e1 = m1
else:
s1 = m1
if(sit_col<m2):
e2 = m2
else:
s2 = m2
return dp(s1,s2,e1,e2)
好了,到這里代碼基本分析完了。如果還有不清楚的地方歡迎下方留言。
除了這種算法外,我也寫一種貪心算法來求解這道題,只可惜最壞的情況下算法復雜度還是O(n^2),QAQ。
大體的思路就是從中間位置起找相鄰4個點中最大的點,繼續把該點來找相鄰最大點,最后一定會找到一個峰值點,有興趣的可以看一下,上代碼:
#!/usr/bin/python3
def dp(n):
temp = (str[n],str[n-9],str[n-1],str[n+1],str[n+9]) #中 上 左 右 下
sit = temp.index(max(temp))
if(sit==0):
return str[n]
elif(sit==1):
return dp(n-9)
elif(sit==2):
return dp(n-1)
elif(sit==3):
return dp(n+1)
else:
return dp(n+9)
f = open("/home/nancy/桌面/demo.txt","r")
list = f.read()
list = list.replace(" ","").split() #轉換為列表
row = len(list)
col = len(list[0])
str="0"*(col+3)
for x in list: #加圍墻 二維變一維
str+=x+"00"
str+="0"*(col+1)
mid = int(len(str)/2)
print(str,mid)
p = dp(mid)
print (p)
f.close()
以上這篇python分治法求二維數組局部峰值方法就是小編分享給大家的全部內容了,希望能給大家一個參考
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
2025 年,數據如同數字時代的 DNA,編碼著人類社會的未來圖景,驅動著商業時代的運轉。從全球互聯網用戶每天產生的2.5億TB數據, ...
2025-05-27CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25