
企業致力于收集和存儲大量數據,但通常只分析其中的一小部分。他們發現數據是新的貨幣,因為數據中隱藏著很多價值。他們正在利用數據科學和大數據分析工具從其“數據寶庫”中提取價值。這有助于他們進行數字化轉型。一些組織在這方面取得了巨大的成功,并不斷創新、獲得市場份額、增加價值(例如Amazon、谷歌、Facebook等公司),而其他公司也在努力效仿。
麥肯錫全球研究院于2011年5月發表了一篇開創性論文,名為“大數據:創新,競爭和生產力的下一個前沿”,使得大數據和分析開始引起人們的關注。根據谷歌公司的趨勢分析(它提高了人們對關鍵詞的搜索興趣),大數據和分析熱潮在2016年6月達到了頂峰。而云計算一直持續受到人們的高度關注,因為越來越多的企業繼續實施云計算技術,以提高業務靈活性、運營彈性、改進性能,以及更高的效率。
數字化轉型需要在組織層面上發揮作用,并將成為一種永久的運營方式。
人們可能會想知道,在大數據和分析達到發展頂峰之后將會變成什么樣子。只要所公布的客戶調查、供應商利益、分析師報告、收入來源等資料具有價值,那么企業都將采用大數據和分析來獲取。調研機構Gartner公司2016年進行的一項調查報告表明,在過去五年中,企業對大數據和分析的投資一直在不斷增長,但對其未來投資的興趣似乎有所下降。這可能是由于這些投資獲得實際收益的一種停頓。而Gartner公司的另一份調查報告顯示,只有大約12%的大數據項目取得了可衡量的成果。然而,社交媒體、物聯網(IoT)、智能手機、移動設備、游戲裝備、可穿戴設備、傳感器、無人機、遠程監控器、精密醫療、精準農業、智能城市、智能建筑、自動駕駛汽車、遠程控制車輛等技術將產生大量需要收集、匯總和分析的數據,以做出有用且有價值的決策。
而使用傳統方法和系統來人工分析數據是不可能的。來自大數據和分析的潛在價值每年達到數十億美元。這被認為是一個保守的估計。因為麥肯錫公司2011年進行的調查報告僅僅占據了大數據潛在價值的一小部分。只有基于位置的數據的采用率和價值捕獲率高達50%-60%,其次是美國零售業,達到30%-40%,制造業占20%-30%,美國醫療保健行業為10%-20%,歐盟公共部門為10%-20%。因此,大數據和分析的興趣和投資在幾乎所有行業都會增加,以捕捉大數據中隱藏的價值。預計在未來幾年中企業對云計算的大數據會持續產生興趣。
數據安全
隨著越來越多的數據被收集、匯總、分析,并用于做出影響人們生活的決策,數據安全性成為人們最為關切的問題。數據治理需要處理從不同來源收集的數據高峰以及管理這些數據元素所涉及的風險的中心階段。美國聯邦、州、市和地方政府機構以及其他非營利性公共服務組織需要符合嚴格的保密性、完整性和可用性(CIA)規則,并且還要提供良好的治理、滿足合規要求和管理風險(GCR)。
人們一個常見的誤解是,組織需要從不同來源收集的大量結構化和非結構化數據,包括外部來源(需要驗證和風險評估)來開始分析。企業不需要大量數據來啟動分析項目??梢詮囊延械摹包S金標準數據”開始,并考慮單獨使用這些數據或將其與其他內部數據集結合使用,以解決業務問題作為向決策者購買的概念證明的可能性。企業可以嘗試和分析以前沒有查看的不同變量,以確定相關性、因果關系和預測因素,謹慎發現,并避免重合。這是行業領域知識和專業知識發揮作用的地方。利用可用且經濟實惠的計算能力、存儲和網絡容量,企業可以輕松地分析更多數據,以查看隱藏在數據中的模式和概率?;跇I務需求,分析可用于描述性、診斷性、預測性、規定性的目的。物聯網、傳感器、操作技術、設備維護、精密醫療、電網、航運、物流、執法和精準農業正在越來越多地利用上述不同類型的分析來處理一個或多個業務問題,或根據需要來提供解決方案。
大數據的需求
大數據對不同的人意味著不同的事物。不同的IT分析師、商業領袖、顧問、學術研究人員、標準組織已經根據他們的觀點定義了大數據,其中包括數量、速度、品種、準確性、復雜性等因素。雖然在大數據方面沒有明確的共識,他們現有的能力在人員、過程和技術方面的處理能力太大了。就大數據和分析而言,人員是最難的部分。存在組織慣性、缺乏決策者的支持,以及難以找到正確理解分析的數據和業務領域的數據科學家等問題。同樣,大數據分析師也很缺乏。世界各地的許多高?;蛘J證機構都在提供數據科學和分析方面的新課程,以滿足日益增長的需求。
由于大數據領域是新興行業,很難找到適合的專家,因此所謂的“大數據專家或數據科學家”被金融交易、銀行、信用評級機構,以及信用卡公司等大型金融組織所吸引。此外,谷歌、Facebook、LinkedIn、雅虎、微軟、亞馬遜等行業巨頭也求賢若渴,因為他們為這些人才提供了豐厚的薪酬、股票期權,以及更好的發展前景。在爭奪同樣的人才方面,美國的聯邦、州、市和地方政府以及非營利組織都處于劣勢。但是,一些具有深謀遠慮的政府組織已經成功招募了一些優秀的大數據科學家。
克服人才短缺的挑戰
為了克服數據科學家短缺的挑戰,許多企業正在建立一個數據科學團隊,其中包括具有大數據分析方面知識和專業知識的人員,以及行業專家,例如IT和業務領域。他們可以一起補充彼此的專業知識,互相協作并提出業務問題的解決方案。一個成功的大數據分析團隊的一個重要特征是能夠用商業術語講述故事,并實現數據可視化,而這些數據可視化只需要很少的解釋。這是一項非常特殊的技能,需要銷售技能來完成交易。這些能力有助于建立數據科學團隊或大數據和分析團隊的可信度,以獲得高級管理人員的支持,并將分析從一個業務領域擴展到另一個業務領域,并最終擴展到整個組織或企業。這些人員則是“翻譯者”,他們可以從數據分析中獲得結果,并將其置于商業術語中,以便企業能夠理解和適應。數字化轉型需要在組織層面上發揮作用,并成為一種永久的運營方式。大數據和分析是私營或公共企業數字化轉型的一個組成部分。因此,許多組織開始了數字化轉型之旅,通過分析釋放隱藏在大數據中的價值。今后將會有更多的組織效仿跟隨。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25