
橫向對比分析Python解析XML的四種方式
在最初學習PYTHON的時候,只知道有DOM和SAX兩種解析方法,但是其效率都不夠理想,由于需要處理的文件數量太大,這兩種方式耗時太高無法接受。
在網絡搜索后發現,目前應用比較廣泛,且效率相對較高的ElementTree也是一個比較多人推薦的算法,于是拿這個算法來實測對比,ElementTree也包括兩種實現,一個是普通ElementTree(ET),一個是ElementTree.iterparse(ET_iter)。
本文將對DOM、SAX、ET、ET_iter四種方式進行橫向對比,通過處理相同文件比較各個算法的用時來評估其效率。
程序中將四種解析方法均寫為函數,在主程序中分別調用,來評估其解析效率。
解壓后的XML文件內容示例為:
主程序函數調用部分代碼為:
print("文件計數:%d/%d." % (gz_cnt,paser_num))
str_s,cnt = dom_parser(gz)
#str_s,cnt = sax_parser(gz)
#str_s,cnt = ET_parser(gz)
#str_s,cnt = ET_parser_iter(gz)
output.write(str_s)
vs_cnt += cnt
在最初的函數調用中函數返回兩個值,但接收函數調用值時用兩個變量分別調用,導致每個函數都要執行兩次,之后修改為一次調用兩個變量接收返回值,減少了無效調用。
1、DOM解析
函數定義代碼:
def dom_parser(gz):
import gzip,cStringIO
import xml.dom.minidom
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip.open(gz,'rb')
print("已讀入:%s.\n解析中:" % (os.path.abspath(gz)))
doc = xml.dom.minidom.parseString(xm.read())
bulkPmMrDataFile = doc.documentElement
#讀入子元素
enbs = bulkPmMrDataFile.getElementsByTagName("eNB")
measurements = enbs[0].getElementsByTagName("measurement")
objects = measurements[0].getElementsByTagName("object")
#寫入csv文件
for object in objects:
vs = object.getElementsByTagName("v")
vs_cnt += len(vs)
for v in vs:
file_io.write(enbs[0].getAttribute("id")+' '+object.getAttribute("id")+' '+\
object.getAttribute("MmeUeS1apId")+' '+object.getAttribute("MmeGroupId")+' '+object.getAttribute("MmeCode")+' '+\
object.getAttribute("TimeStamp")+' '+v.childNodes[0].data+'\n') #獲取文本值
str_s = (((file_io.getvalue().replace(' \n','\r\n')).replace(' ',',')).replace('T',' ')).replace('NIL','')
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序運行結果:
**************************************************
程序處理啟動。
輸入目錄為:/tmcdata/mro2csv/input31/。
輸出目錄為:/tmcdata/mro2csv/output31/。
輸入目錄下.gz文件個數為:12,本次處理其中的12個。
**************************************************
文件計數:1/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件計數:2/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件計數:3/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
………………………………………
文件計數:12/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行計數:177849,運行時間:107.077867,每秒處理行數:1660。
已寫入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序處理結束。
由于DOM解析需要將整個文件讀入內存,并建立樹結構,其內存消耗和時間消耗都比較高,但其優點在于邏輯簡單,不需要定義回調函數,便于實現。
2、SAX解析
函數定義代碼:
def sax_parser(gz):
import os,gzip,cStringIO
from xml.parsers.expat import ParserCreate
#變量聲明
d_eNB = {}
d_obj = {}
s = ''
global flag
flag = False
file_io = cStringIO.StringIO()
#Sax解析類
class DefaultSaxHandler(object):
#處理開始標簽
def start_element(self, name, attrs):
global d_eNB
global d_obj
global vs_cnt
if name == 'eNB':
d_eNB = attrs
elif name == 'object':
d_obj = attrs
elif name == 'v':
file_io.write(d_eNB['id']+' '+ d_obj['id']+' '+d_obj['MmeUeS1apId']+' '+d_obj['MmeGroupId']+' '+d_obj['MmeCode']+' '+d_obj['TimeStamp']+' ')
vs_cnt += 1
else:
pass
#處理中間文本
def char_data(self, text):
global d_eNB
global d_obj
global flag
if text[0:1].isnumeric():
file_io.write(text)
elif text[0:17] == 'MR.LteScPlrULQci1':
flag = True
#print(text,flag)
else:
pass
#處理結束標簽
def end_element(self, name):
global d_eNB
global d_obj
if name == 'v':
file_io.write('\n')
else:
pass
#Sax解析調用
handler = DefaultSaxHandler()
parser = ParserCreate()
parser.StartElementHandler = handler.start_element
parser.EndElementHandler = handler.end_element
parser.CharacterDataHandler = handler.char_data
vs_cnt = 0
str_s = ''
xm = gzip.open(gz,'rb')
print("已讀入:%s.\n解析中:" % (os.path.abspath(gz)))
for line in xm.readlines():
parser.Parse(line) #解析xml文件內容
if flag:
break
str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','') #寫入解析后內容
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序運行結果:
**************************************************
程序處理啟動。
輸入目錄為:/tmcdata/mro2csv/input31/。
輸出目錄為:/tmcdata/mro2csv/output31/。
輸入目錄下.gz文件個數為:12,本次處理其中的12個。
**************************************************
文件計數:1/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件計數:2/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件計數:3/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
.........................................
文件計數:12/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行計數:177849,運行時間:14.386779,每秒處理行數:12361。
已寫入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序處理結束。
SAX解析相比DOM解析,運行時間大幅縮短,由于SAX采用逐行解析,對于處理較大文件其占用內存也少,因此SAX解析是目前應用較多的一種解析方法。其缺點在于需要自己實現回調函數,邏輯較為復雜。
3、ET解析
函數定義代碼:
def ET_parser(gz):
import os,gzip,cStringIO
import xml.etree.cElementTree as ET
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip.open(gz,'rb')
print("已讀入:%s.\n解析中:" % (os.path.abspath(gz)))
tree = ET.ElementTree(file=xm)
root = tree.getroot()
for elem in root[1][0].findall('object'):
for v in elem.findall('v'):
file_io.write(root[1].attrib['id']+' '+elem.attrib['TimeStamp']+' '+elem.attrib['MmeCode']+' '+\
elem.attrib['id']+' '+ elem.attrib['MmeUeS1apId']+' '+ elem.attrib['MmeGroupId']+' '+ v.text+'\n')
vs_cnt += 1
str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','') #寫入解析后內容
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序運行結果:
**************************************************
程序處理啟動。
輸入目錄為:/tmcdata/mro2csv/input31/。
輸出目錄為:/tmcdata/mro2csv/output31/。
輸入目錄下.gz文件個數為:12,本次處理其中的12個。
**************************************************
文件計數:1/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件計數:2/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件計數:3/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
...........................................
文件計數:12/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行計數:177849,運行時間:4.308103,每秒處理行數:41282。
已寫入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序處理結束。
相較于SAX解析,ET解析時間更短,并且函數實現也比較簡單,所以ET具有類似DOM的簡單邏輯實現且匹敵SAX的解析效率,因此ET是目前XML解析的首選。
4、ET_iter解析
函數定義代碼:
def ET_parser_iter(gz):
import os,gzip,cStringIO
import xml.etree.cElementTree as ET
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip.open(gz,'rb')
print("已讀入:%s.\n解析中:" % (os.path.abspath(gz)))
d_eNB = {}
d_obj = {}
i = 0
for event,elem in ET.iterparse(xm,events=('start','end')):
if i >= 2:
break
elif event == 'start':
if elem.tag == 'eNB':
d_eNB = elem.attrib
elif elem.tag == 'object':
d_obj = elem.attrib
elif event == 'end' and elem.tag == 'smr':
i += 1
elif event == 'end' and elem.tag == 'v':
file_io.write(d_eNB['id']+' '+d_obj['TimeStamp']+' '+d_obj['MmeCode']+' '+d_obj['id']+' '+\
d_obj['MmeUeS1apId']+' '+ d_obj['MmeGroupId']+' '+str(elem.text)+'\n')
vs_cnt += 1
elem.clear()
str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','') #寫入解析后內容
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序運行結果:
**************************************************
程序處理啟動。
輸入目錄為:/tmcdata/mro2csv/input31/。
輸出目錄為:/tmcdata/mro2csv/output31/。
輸入目錄下.gz文件個數為:12,本次處理其中的12個。
**************************************************
文件計數:1/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件計數:2/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件計數:3/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
...................................................
文件計數:12/12.
已讀入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行計數:177849,運行時間:3.043805,每秒處理行數:58429。
已寫入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序處理結束。
在引入了ET_iter解析后,解析效率比ET提升了近50%,而相較于DOM解析更是提升了35倍,在解析效率提升的同時,由于其采用了iterparse這個循序解析的工具,其內存占用也是比較小的。
所以,小伙伴們,請好好利用這幾種工具吧。
以上就是本文的全部內容,希望對大家的學習有所幫助。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25