
為什么數據科學家都鐘情于最常見的正態分布
對于深度學習和機器學習工程師們來說,正態分布是世界上所有概率模型中最重要的一個。即使你沒有參與過任何人工智能項目,也一定遇到過高斯模型,今天就讓我們來看看高斯過程為什么這么受歡迎。
高斯分布(Gaussian distribution),也稱正態分布,最早由A.棣莫弗在求二項分布的漸近公式中得到。C.F.高斯在研究測量誤差時從另一個角度導出了它。P.S.拉普拉斯和高斯研究了它的性質。是一個在數學、物理及工程等領域都非常重要的概率分布,在統計學的許多方面有著重大的影響力。
正態曲線呈鐘型,兩頭低,中間高,左右對稱因其曲線呈鐘形,因此人們又經常稱之為鐘形曲線。
若隨機變量X服從一個數學期望為μ、方差為σ^2的正態分布,記為N(μ,σ^2)。其概率密度函數為正態分布的期望值μ決定了其位置,其標準差σ決定了分布的幅度。當μ = 0,σ = 1時的正態分布是標準正態分布。
高斯概率分布的數學表達式
在自然現象中隨處可見
所有模型都是錯的,但有些是有用的
—George Box
正在擴散的粒子的位置可以用正態分布來描述
正態分布有極其廣泛的實際背景,生產與科學實驗中很多隨機變量的概率分布都可以近似地用正態分布來描述。例如,在生產條件不變的情況下,產品的強力、抗壓強度、口徑、長度等指標;同一種生物體的身長、體重等指標;同一種種子的重量;測量同一物體的誤差;彈著點沿某一方向的偏差;某個地區的年降水量;以及理想氣體分子的速度分量,等等。
一般來說,如果一個量是由許多微小的獨立隨機因素影響的結果,那么就可以認為這個量具有正態分布。從理論上看,正態分布具有很多良好的性質,許多概率分布可以用它來近似;還有一些常用的概率分布是由它直接導出的,例如對數正態分布、t分布、F分布等。
數學原因:中心極限定理
二維空間上進行200萬步的隨機游走之后得到的圖案
中心極限定理的內容為:大量獨立隨機變量的和經過適當標準化之后趨近于正態分布,與這些變量原本的分布無關。比如,隨機游走的總距離就趨近于正態分布。下面我們介紹三種形式的中心極限定理:
獨立同分布的中心極限定理
設隨機變量X1,X2,......Xn,......獨立同分布,并且具有有限的數學期望和方差:E(Xi)=μ,D(Xi)=σ^2 (i=1,2....),則對任意x,分布函數為
滿足
該定理說明,當n很大時,隨機變量
近似地服從標準正態分布N(0,1)。因此,當n很大時,
近似地服從正態分布N(nμ,nσ^2).該定理是中心極限定理最簡單又最常用的一種形式,在實際工作中,只要n足夠大,便可以把獨立同分布的隨機變量之和當作正態變量。這種方法在數理統計中用得很普遍,當處理大樣本時,它是重要工具。
棣莫佛-拉普拉斯定理
設隨機變量X(n=1,2,...,)服從參數為n,p(0<p<1)的二項分布,則對于任意有限區間(a,b)有
該定理表明,正態分布是二項分布的極限分布,當數充分大時,我們可以利用上式來計算二項分布的概率。
不同分布的中心極限定理
設隨機變量X1,X2,......Xn,......獨立同分布,它們的概率密度分別為fxk(x),并有E(Xk)=μk,D(Xk)= σk^2,(k=1,2......)
若對任意正數τ,有:
對任意x,隨機變量Yn的分布函數Fn(x),滿足:
該定理說明:所研究的隨機變量如果是有大量獨立的而且均勻的隨機變量相加而成,那么它的分布將近似于正態分布。
萬變不離其宗
與其他很多分布不同,正態分布進行適當的變換之后,仍是正態分布。
簡潔
奧卡姆剃刀強調一個哲學原則:在其他條件都相同下,最簡單的解就是最好的解。
對于任何一個用正態分布擬合的隨機分布,都可能存在一個多參數,更復雜,更準確的解法。但是我們仍然會傾向于選用正態分布,因為它在數學上很簡潔。
它的均值(mean)、中值(median)和眾數(mode)都相同
只需要用兩個參數就可以確定整個分布
圖形特性:
集中性:正態曲線的高峰位于正中央,即均數所在的位置。
對稱性:正態曲線以均數為中心,左右對稱,曲線兩端永遠不與橫軸相交。
均勻變動性:正態曲線由均數所在處開始,分別向左右兩側逐漸均勻下降。
曲線與橫軸間的面積總等于1,相當于概率密度函數的函數從正無窮到負無窮積分的概率為1。即頻率的總和為100%。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25