熱線電話:13121318867

登錄
首頁精彩閱讀為什么說機器學習正在革新2019年的制造業?
為什么說機器學習正在革新2019年的制造業?
2019-09-18
收藏
為什么說<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>正在革新2019年的制造業?

作者 | Louis Columbus

來源 | CDA數據分析師

10 Ways Machine Learning Is Revolutionizing Manufacturing In 2019

  • 人工智能有可能在全球業務的營銷和銷售中創造1.4T至2.6T的價值,在供應鏈管理和制造方面的成本為1.2T至2T。
  • 根據IDC的數據,到2021年,20%的領先制造商將依賴嵌入式智能,使用AI,IoT和區塊鏈應用程序來自動化流程并將執行時間增加高達25%。
  • 德勤表示,機器學習可以使離散制造業的產品質量提高35%。
  • 麥肯錫(McKinsey)表示,由于對數據的嚴重依賴,未來五到七年內擁有人工智能的公司有50%可能將現金流增加一倍,制造業領先所有行業。
  • 到2020年,60%的領先制造商將依靠數字平臺來支持其總收入的30%。
  • 48%的日本制造商看到了將機器學習和數字制造技術整合到其運營中的更多機會,而不是最初認為根據麥肯錫的標志性研究 - 數字制造 - 逃避試點煉獄。

底線: 2019年制造商的領先增長戰略是通過投資機器學習平臺來提高車間生產率,這些平臺提供了提高產品質量和產量所需的洞察力。

使用機器學習來簡化生產的每個階段,從入庫供應商質量開始,從制造計劃到履行,現在是制造業的優先事項。根據Deloitte最近的一項調查,機器學習將計劃外機器停機時間減少了15-30%,生產量提高了20%,維護成本降低了30%,質量提高了35%。

以下是機器學習在2019年徹底改變制造的十種方式:

人工智能有可能在全球業務的營銷和銷售中創造1.4T至2.6T的價值,在供應鏈管理和制造方面創造1.2T至2美元的價值。

麥肯錫預測,基于人工智能的預測性維護有可能為制造商帶來0.5美元至0.7億美元的價值。麥肯錫引用AI處理海量數據的能力,包括音頻和視頻,意味著它可以快速識別異常以防止故障。機器學習可以確定特定聲音是飛機發動機在質量測試下正確運行還是裝配線上的機器即將失效。

為什么說<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>正在革新2019年的制造業?

(麥肯錫/哈佛商業評論——AI的大多數商業用途將由 Michael Chui,Nicolaus Henke和Mehdi Miremadi 兩個領域組成)

通過在云平臺上擴展的機器學習和預測分析,制造商正在獲得有關如何使其更具可持續性的新見解。

流程制造商正在使用Azure的Symphony Industrial AI從模板庫部署設備模型,模板庫包括熱交換器,泵,壓縮機以及制造商所依賴的其他資產。Symphony AI的Process 360 AI可幫助用戶創建其流程的預測模型。高級別的過程被定義為通過設備生產的物品(如化學品,燃料,金屬,其他中間產品和成品)。工藝模板實例包括氨工藝,乙烯工藝,LNG工藝和聚丙烯工藝。過程模型有助于預測過程擾動和跳閘 - 單獨的設備模型可能無法預測。

為什么說<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>正在革新2019年的制造業?

(Microsoft Azure博客, 使用Symphony Industrial AI實施制造預測分析)

波士頓咨詢集團(BCG)發現,制造商使用人工智能可以將生產商的轉換成本降低多達20%,同時由于勞動力生產率提高,成本降低高達70%。

BCG發現,生產商將能夠通過使用人工智能開發和生產針對特定客戶量身定制的創新產品,并在更短的交付周期內交付產品,從而產生額外的銷售額。下圖說明了AI如何根據BCG的分析為生產流程帶來更高的靈活性和規模。

為什么說<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>正在革新2019年的制造業?

(波士頓咨詢集團,AI未來工廠)

依賴重型資產的離散和流程制造商正在使用人工智能和機器學習來提高吞吐量,能耗和每小時利潤。

擁有重型設備(包括大型機械)的制造商正在探索使用算法來提高產量,可持續性和良率。麥肯錫發現AI可以自動執行復雜的任務,并提供一致性和精確的最佳設定點,使機器能夠以自動駕駛模式運行,這對于在一個或多個生產班次上實現熄燈制造至關重要。

為什么說<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>正在革新2019年的制造業?

(麥肯錫,AI正在制作中:Eleftherios Charalambous,Robert Feldmann,GérardRichter和Christoph Schmitz 為重型資產制造商改變游戲規則)

基于AI和機器學習的產品缺陷檢測和質量保證顯示出將制造生產率提高50%或更多的潛力。

機器學習在發現產品及其包裝異常方面的固有優勢具有提高產品質量和阻止有缺陷的產品離開生產設施的巨大潛力。使用基于深度學習的系統,與人工檢查相比,缺陷檢測高達90%的改進是可行的。鑒于開源人工智能環境的可用性以及相機和功能強大的計算機方面的廉價硬件,即使是小型企業也越來越依賴基于人工智能的視覺檢測。在啟用AI的視覺質量檢查中,通過從不同角度對優質和有缺陷產品進行視覺成像來創建參考示例,從而為監督學習算法的培訓提供動力。

為什么說<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>正在革新2019年的制造業?

(通過人工智能(AI)實現智能化 - 德國及其工業部門有哪些內容?(52頁,PDF,無選擇加入)麥肯錫公司)

機器學習有可能減少制造業的長期勞動力短缺,同時尋找新的方法來同時留住員工。

制造業今天面臨嚴重的勞動力短缺,每一次制造商調查都反映出這個問題是影響行業增長的三大因素之一。承擔這一挑戰的最有趣的公司之一是Eightfold。他們基于AI的人才智能平臺依賴于一系列有監督無監督機器學習算法,以匹配候選人獨特的能力,經驗和優勢。包括ConAgra在內的制造商依賴于八倍改善招聘并重新發現他們為團隊配備人才和追求增長機會所需的人才。下圖解釋了Eightfold人才智能平臺的工作原理:

為什么說<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>正在革新2019年的制造業?

機器學習正在幫助制造商解決以前難以解決的問題并揭示他們從未知道的那些問題,包括隱藏的瓶頸或無利可圖的生產線。

提高車間每臺機器的預測性維護精度,揭示如何提高每臺機器和相關工作流程的產量/吞吐量,優化系統和供應鏈優化。下圖說明了機器學習如何首先從機器級別開始提高車間生產率,然后擴展到工作流程及其所依賴的系統。

為什么說<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>正在革新2019年的制造業?

(麥肯錫,制造業:分析提升生產率和盈利能力,由Valerio Dilda,Lapo Mori,Olivier Noterdaeme和Christoph Schmitz提供)

機器學習可以顯著改善產品配置,以及制造商依賴于按訂單生產產品的配置 - 報價(CPQ)工作流程。

西門子的方法來銷售,設計,和安裝鐵路聯鎖控制系統使用AI和機器學習,找出10種的最佳配置90種可能的組合。機器學習擅長定義最能滿足客戶需求的最佳配置,同時也是最可靠的制造。

為什么說<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>正在革新2019年的制造業?

(西門子,下一級AI - 由知識圖和數據思維提供支持,西門子中國創新日,Michael May,成都)

預計人工智能和制造業中的機器學習將在未來五年內超過機器人技術,成為制造業的主要用例。

供應鏈操作的復雜性和約束是機器學習算法的理想用例,以提供推薦的解決方案。制造商正在尋求有關預測性維護的試點,那些能夠帶來明顯收入增長的企業最有可能投入生產。

為什么說<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>正在革新2019年的制造業?

(MAPI基金會,制造業發展:人工智能將如何改變制造業和未來的勞動力作者: Robert D. Atkinson,Stephen Ezell,信息技術與創新基金會(PDF,56頁,選擇加入))

機器學習正在徹底改變制造商如何保護每個威脅表面,依靠零信任安全(ZTS)框架來保護和擴展其運營。

制造商正在轉向零信任安全(ZTS)框架,以保護其供應鏈和生產網絡中的每個網絡,云和內部部署平臺,操作系統和應用程序。首席分析師Forrester的Chase Cunningham是Zero Trust Security的主要權威,他最近的視頻Zero Trust In Action值得關注,以了解制造商如何保護其IT基礎架構。這個領域有幾家值得關注的公司,包括 MobileIron創建了一個以移動為中心,零信任的企業安全框架制造商,它們依賴于今天。Centrify的身份訪問管理方法阻礙了特權帳戶濫用,這是當今違規行為的主要原因。 Centrify 最近的一項調查, 即現代Threatscape中的特權訪問管理,發現 74%的違規行為涉及訪問特權帳戶。特權訪問憑證是黑客最常用的技術,用于啟動違規行為,從制造商那里獲取有價值的數據并在Dark Web上銷售。

為什么說<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>正在革新2019年的制造業?

數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢