
來源 | 21世紀經濟報道
中國科學院院士、中國人民解放軍軍事科學院副院長梅宏認為,當前大數據應用尚處于初級階段,根據大數據分析預測未來、指導實踐的深層次應用將成為發展重點。
他指出,預計到2020年,我國數據總量有望占全球數據總量的21%,但我國核心技術薄弱,建議以開源為基礎構建自主可控的大數據產業生態。
大數據應用三個層次
梅宏指出,按照數據開發應用深入程度的不同,可將眾多的大數據應用分為三個層次。
第一層,描述性分析應用,是指從大數據中總結、抽取相關的信息和知識,幫助人們分析發生了什么,并呈現事物的發展歷程。
如美國的DOMO公司從其企業客戶的各個信息系統中抽取、整合數據,再以統計圖表等可視化形式,將數據蘊含的信息推送給不同崗位的業務人員和管理者,幫助其更好地了解企業現狀,進而做出判斷和決策。
第二層,預測性分析應用,是指從大數據中分析事物之間的關聯關系、發展模式等,并據此對事物發展的趨勢進行預測。
如微軟公司紐約研究院研究員David Rothschild通過收集和分析賭博市場、好萊塢證券交易所、社交媒體用戶發布的帖子等大量公開數據,建立預測模型,對多屆奧斯卡獎項的歸屬進行預測。2014和2015年,均準確預測了奧斯卡共24個獎項中的21個,準確率達87.5%。
第三層,指導性分析應用,是指在前兩個層次的基礎上,分析不同決策將導致的后果,并對決策進行指導和優化。
如無人駕駛汽車分析高精度地圖數據和海量的激光雷達、攝像頭等傳感器的實時感知數據,對車輛不同駕駛行為的后果進行預判,并據此指導車輛的自動駕駛。
自動駕駛有效應用面臨挑戰
梅宏認為,當前,在大數據應用的實踐中,描述性、預測性分析應用多,決策指導性等更深層次分析應用偏少。
一般而言,人們做出決策的流程通常包括:認知現狀、預測未來和選擇策略這三個基本步驟。這些步驟也對應了上述大數據分析應用的三個不同類型。
不同類型的應用意味著人類和計算機在決策流程中不同的分工和協作。例如:第一層次的描述性分析中,計算機僅負責將與現狀相關的信息和知識展現給人類專家,而對未來態勢的判斷及對最優策略的選擇仍然由人類專家完成。應用層次越深,計算機承擔的任務越多、越復雜,效率提升也越大,價值也越大。
然而,隨著研究應用的不斷深入,人們逐漸意識到前期在大數據分析應用中大放異彩的深度神經網絡尚存在基礎理論不完善、模型不具可解釋性、魯棒性較差等問題。
因此,雖然應用層次最深的決策指導性應用,當前已在人機博弈等非關鍵性領域取得較好應用效果,但是,在自動駕駛、政府決策、軍事指揮、醫療健康等應用價值更高,且與人類生命、財產、發展和安全緊密關聯的領域,要真正獲得有效應用,仍面臨一系列待解決的重大基礎理論和核心技術挑戰。
梅宏指出,在此之前,人們還不敢、也不能放手將更多的任務交由計算機大數據分析系統來完成。這也意味著,雖然已有很多成功的大數據應用案例,但還遠未達到我們的預期,大數據應用仍處于初級階段。
未來,隨著應用領域的拓展、技術的提升、數據共享開放機制的完善,以及產業生態的成熟,具有更大潛在價值的預測性和指導性應用將是發展的重點。
工業互聯網政府熱、企業冷
作為人口大國和制造大國,我國數據產生能力巨大,大數據資源極為豐富。
梅宏指出,預計到2020年,我國數據總量有望達到8000EB(1018),占全球數據總量的21%,將成為名列前茅的數據資源大國和全球數據中心。
然而,我們也必須清醒地認識到我國在大數據方面仍存在一系列亟待補上的短板。
其中較為突出的是核心技術薄弱,基礎理論與核心技術的落后導致我國信息技術長期存在“空心化”和“低端化”問題,大數據時代需避免此問題在新一輪發展中再次出現。
近年來,我國在大數據應用領域取得較大進展,但是基礎理論、核心器件和算法、軟件等層面,較之美國等技術發達國家仍明顯落后。
在大數據管理、處理系統與工具方面,我國主要依賴國外開源社區的開源軟件,然而,由于我國對國際開源社區的影響力較弱,導致對大數據技術生態缺乏自主可控能力,成為制約我國大數據產業發展和國際化運營的重大隱患。
梅宏建議采用“參與融入、蓄勢引領”的開源推進策略,一方面鼓勵我國企業積極“參與融入”國際成熟的開源社區,爭取話語權;另一方面,也要在建設基于中文的開源社區方面加大投入,匯聚國內軟硬件資源和開源人才,打造自主可控開源生態,在學習實踐中逐漸成長壯大,伺機實現引領發展。
此外,融合應用有待深化。梅宏指出我國大數據與實體經濟融合不夠深入,主要問題表現在:基礎設施配置不到位,數據采集難度大;缺乏有效引導與支撐,實體經濟數字化轉型緩慢;缺乏自主可控的數據互聯共享平臺等。
當前,工業互聯網成為互聯網發展的新領域,然而仍存在不少問題:政府熱、企業冷,政府時有“項目式”、“運動式”推進,而企業由于沒看到直接、快捷的好處,接受度低;設備設施的數字化率和聯網率偏低;大多數大企業仍然傾向打造難以與外部系統交互數據的封閉系統,而眾多中小企業數字化轉型的動力和能力嚴重不足;國外廠商的設備在我國具有壟斷地位,這些企業紛紛推出相應的工業互聯網平臺,搶占工業領域的大數據基礎服務市場。
梅宏建議大力發展行業大數據應用。以制造業為例,麥肯錫研究報告稱:制造企業在利用大數據技術后,其生產成本能夠降低10%—15%。
而大數據技術對制造業的影響遠非成本這一個方面。利用源于產品生命周期中市場、設計、制造、服務、再利用等各個環節數據,制造業企業可以更加精細、個性化地了解客戶需求;建立更加精益化、柔性化、智能化的生產系統;創造包括銷售產品、服務、價值等多樣的商業模式;并實現從應激式到預防式的工業系統運轉管理模式的轉變。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25