
作者|Kin Lim Lee
編譯|量子位
最近,大數據工程師Kin Lim Lee在Medium上發表了一篇文章,介紹了8個用于數據清洗的Python代碼。
數據清洗,是進行數據分析和使用數據訓練模型的必經之路,也是最耗費數據科學家/程序員精力的地方。
這些用于數據清洗的代碼有兩個優點:一是由函數編寫而成,不用改參數就可以直接使用。二是非常簡單,加上注釋最長的也不過11行。在介紹每一段代碼時,Lee都給出了用途,也在代碼中也給出注釋。大家可以把這篇文章收藏起來,當做工具箱使用。
涵蓋8大場景的數據清洗代碼
這些數據清洗代碼,一共涵蓋8個場景,分別是:
刪除多列、更改數據類型、將分類變量轉換為數字變量、檢查缺失數據、刪除列中的字符串、刪除列中的空格、用字符串連接兩列(帶條件)、轉換時間戳(從字符串到日期時間格式)
刪除多列
在進行數據分析時,并非所有的列都有用,用df.drop可以方便地刪除你指定的列。
def drop_multiple_col(col_names_list, df): AIM -> Drop multiple columns based on their column names INPUT -> List of column names, df OUTPUT -> updated df with dropped columns ------ df.drop(col_names_list, axis=1, inplace=True) return df
轉換數據類型
當數據集變大時,需要轉換數據類型來節省內存。
def change_dtypes(col_int, col_float, df): AIM -> Changing dtypes to save memory INPUT -> List of column names (int, float), df OUTPUT -> updated df with smaller memory ------ df[col_int] = df[col_int].astype( int32 ) df[col_float] = df[col_float].astype( float32 )
將分類變量轉換為數值變量
一些機器學習模型要求變量采用數值格式。這需要先將分類變量轉換為數值變量。同時,你也可以保留分類變量,以便進行數據可視化。
def convert_cat2num(df): # Convert categorical variable to numerical variable num_encode = { col_1 : { YES :1, NO :0}, col_2 : { WON :1, LOSE :0, DRAW :0}} df.replace(num_encode, inplace=True)
檢查缺失數據
如果你要檢查每列缺失數據的數量,使用下列代碼是最快的方法??梢宰屇愀玫亓私饽男┝腥笔У臄祿?,從而確定怎么進行下一步的數據清洗和分析操作。
def check_missing_data(df): # check for any missing data in the df (display in descending order) return df.isnull().sum().sort_values(ascending=False)
刪除列中的字符串
有時候,會有新的字符或者其他奇怪的符號出現在字符串列中,這可以使用df[‘col_1’].replace很簡單地把它們處理掉。
def remove_col_str(df): # remove a portion of string in a dataframe column - col_1 df[ col_1 ].replace(, , regex=True, inplace=True) # remove all the characters after (including ) for column - col_1 df[ col_1 ].replace( .* , , regex=True, inplace=True)
刪除列中的空格
數據混亂的時候,什么情況都有可能發生。字符串開頭經常會有一些空格。在刪除列中字符串開頭的空格時,下面的代碼非常有用。
def remove_col_white_space(df): # remove white space at the beginning of string df[col] = df[col].str.lstrip()
用字符串連接兩列(帶條件)
當你想要有條件地用字符串將兩列連接在一起時,這段代碼很有幫助。比如,你可以在第一列結尾處設定某些字母,然后用它們與第二列連接在一起。根據需要,結尾處的字母也可以在連接完成后刪除。
def concat_col_str_condition(df): # concat 2 columns with strings if the last 3 letters of the first column are pil mask = df[ col_1 ].str.endswith( pil , na=False) col_new = df[mask][ col_1 ] + df[mask][ col_2 ] col_new.replace( pil , , regex=True, inplace=True) # replace the pil with emtpy space
轉換時間戳(從字符串到日期時間格式)
在處理時間序列數據時,我們很可能會遇到字符串格式的時間戳列。這意味著要將字符串格式轉換為日期時間格式(或者其他根據我們的需求指定的格式) ,以便對數據進行有意義的分析。
def convert_str_datetime(df): AIM -> Convert datetime(String) to datetime(format we want) INPUT -> df OUTPUT -> updated df with new datetime format ------ df.insert(loc=2, column= timestamp , value=pd.to_datetime(df.transdate, format= %Y-%m-%d %H:%M:%S.%f ))
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25