熱線電話:13121318867

登錄
首頁精彩閱讀AI、機器學習、數據科學與深度學習研究在2020年的發展趨勢(二)
AI、機器學習、數據科學與深度學習研究在2020年的發展趨勢(二)
2020-04-03
收藏


AI、<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>、數據科學與<a href='/map/shenduxuexi/' style='color:#000;font-size:inherit;'>深度學習</a>研究在2020年的發展趨勢(二)

作者 | Matthew Mayo

編譯 | CDA數據分析師


在2019年(及之前的幾年)中,我們詢問了許多頂級專家,2019年和2020年AI,分析,機器學習,數據科學和深度學習領域最重要的發展趨勢是什么?許多頂級專家對2020年做了一些預測。去年預測的 一些趨勢已經實現:

  • 更加關注AI中的道德
  • 數據科學的民主化
  • 強化學習的進步
  • 中國在AI方面取得越來越大的成功


2019年也有意外驚喜,去年的專家都沒有預言過NLP的突破(例如GPT-2和其他版本的BERT和Transformers)。


我們今年再次問專家:

2019年AI,數據科學,深度學習機器學習的主要發展是什么?您預計2020年會有哪些主要趨勢?


我們收到了大約20份回復,這是第二部分,更側重于技術,行業和部署。一些常見主題包括:AI炒作,Auto-ML,云,數據,可解釋的AI,AI倫理。


以下是Meta Brown,Tom Davenport,Carla Gentry,Nikita Johnson,Doug Laney,Bill Schmarzo,Kate Strachnyi,Ronald van Loon,Fabio Vazquez和Jen Underwood的回答。


AI、<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>、數據科學與<a href='/map/shenduxuexi/' style='color:#000;font-size:inherit;'>深度學習</a>研究在2020年的發展趨勢(二)


Meta Brown :《Data Mining for Dummies》作者,A4A Brown 總裁


在2019年,使用“人工智能”一詞來描述從真正復雜的應用程序和越來越成功的各種應用(例如自動駕駛汽車)的使用激增。我預測到2020年,人們會發現這全都是數學。


一方面,越來越多的人會開始看到現在標記為“ AI”的局限性。公眾意識到面部識別技術可能會因夸張的化妝而受挫,還有那些客戶服務聊天機器人背后沒有經歷人類豐富多彩的生活,還是屬于"人工智障",還有可能花費數百萬美元嘗試使軟件比醫生更智能,但仍然會失敗。


但是,“人工智能”仍然是一個熱門詞匯,風險資本的資金仍在滾滾涌來。2019 年前9個月,超過130億美元流向了AI創業公司。 在2020年,人工智能這兩種前景之間的差距將越來越大:公眾對AI的局限性越來越懷疑,懷疑和意識的形象,以及繼續在AI承諾中投入希望,夢想和金錢的商業和投資社區。


Tom Davenport:巴布森學院總統信息技術與管理學杰出教授,國際分析學會共同創始人,麻省理工學院數字經濟計劃院士,德勤分析高級顧問


2019年的主要發展:

  • 自動化機器學習工具的廣泛部署,用于數據科學的結構化方面。
  • 廣泛認識到,分析和人工智能具有道德層面,需要自覺解決
  • 人們越來越認識到,大多數分析和AI模型都沒有部署,因此對創建它們的組織沒有價值


2020年即將出現的發展:

  • 提供工具以創建,管理和監視組織的機器學習模型套件,并不斷對drifting模型進行重新培訓,并專注于模型庫存管理。
  • 分析和AI轉換器的狀態和識別度得到提高,他們與業務用戶和領導者一起將業務需求轉換為模型的高級規范。
  • 認識到模型是否適合數據只是模型是否有用的一個考慮因素。


Carla Gentry:咨詢數據科學家兼分析解決方案所有者


2019年,還一直有在炒作關于人工智能,機器學習和數據科學無法做什么,我為進入該領域的非熟練專業人士而感到可悲,而大學則向那些不愿接受培訓的老師頒發所謂的證書和學位,實際并沒有資格教授這些課程。

數據科學和機器學習依賴于大量數據,但是我們這一年又面臨著對偏差的誤解,需要解釋的數據總是會面臨偏差的風險。無偏的數據是獨立存在的,不需要解釋。


前幾天,一篇文章標題引起了我的注意:“數據科學快死了嗎?” 甚至在閱讀之前,我最初的想法是:“不,但是所有想做的話題和炒作肯定對我們的領域沒有幫助-數據科學不僅僅是編寫代碼”。對技術的誤解加上缺乏數據和必要的基礎設施將在2020年繼續困擾我們,但至少有些人意識到21世紀最性感的工作畢竟并不那么性感,畢竟在我們收集意見并回答業務問題之前我們花費了大部分時間在清理和準備數據。


在2020年,讓我們所有人都記住它是關于數據的,并確保我們能夠以完整和透明的方式推進我們的領域,人工智能的“黑匣子”時代必須過去,我們才能繼續朝著積極的方向發展。請記住,你構建的算法,模型,聊天機器人等可能會影響某寫人的生活,數據庫中的數據點與某人的生活相對應,因此請消除偏見,讓事實為自己說話。


Nikita Johnson: RE.WORK深度學習和AI創始人


2019年,我們見證了許多領域的突破,這些突破使AI得以前所未有的廣泛應用。諸如轉移學習和強化學習之類的先進軟件技術還幫助推動了AI突破和運用的發展,幫助我們在人類知識的約束下分離了系統改進。


到2020年,我們將朝著“可解釋的AI”邁進,以提高AI模型和技術的透明度,責任感和可重復性。我們需要增加對每種工具的局限性以及優缺點的認識。增強的學習將增強我們對所使用產品建立信任的能力,并允許AI做出更合理的決策!


AI、<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>、數據科學與<a href='/map/shenduxuexi/' style='color:#000;font-size:inherit;'>深度學習</a>研究在2020年的發展趨勢(二)


Doug Laney :Caserta首席數據策略師,《信息經濟學》作者,伊利諾伊州吉斯大學商學院客座教授


上世紀90年代初期,人工智能從平靜的年代復活,再加上數據科學的主流,無非是推動了數據的發展。如今,大數據就是“正義數據”。即使其持續膨脹,其規模也不會再淹沒存儲或計算能力。至少不再有任何借口說任何組織都被數據的龐大性所束縛。確實,目前已經出現了逐漸改進的技術,但是,來自社交媒體平臺的,在合作伙伴之間進行交換的,從網站中獲取并運用于連接的設備的大量數據的涌入,導致無法預料的解釋、自動化和優化問題。它還催生了以數據為中心的新業務模型。


我設想在2020年將會出現擴展信息生態系統,從而進一步使由AI和數據科學推動的業務合作伙伴之間的數字協調成為可能。一些組織可能選擇構建自己的數據交換解決方案,以通過自身和其他組織的信息資產獲利。其他公司將通過區塊鏈支持的數據交換平臺或提供一系列替代數據的數據聚合器來增強其高級分析功能。


Bill Schmarzo :IoT & Analytics Hitachi Vantara的CTO


2019年主要發展

  • 關于通過智能手機,網站,家用設備和車輛將AI集成到我們日常生活中的“消費者驗證點”不斷增長。
  • 正式承認DataOps類別,這是對數據工程角色日益重要的認可
  • 在執行套件中,人們越來越尊重數據科學的業務潛力。
  • CIO繼續努力實現數據貨幣化的承諾。數據湖的幻滅導致數據湖“第二次手術”


2020年主要趨勢

  • 工業公司更多利用現實世界的例子,利用傳感器,邊緣分析和AI來創建通過使用變得更加智能的產品;他們欣賞而不是貶值使用價值
  • 由于無法提供合理的財務或運營影響,宏偉的智能空間項目仍然難以超越最初的試點。
  • 對于利用數據和分析來推動業務成果的組織而言,經濟衰退將在“有”與“無”之間造成鴻溝


Kate Strachnyi :用數據講述故事、數據科學與分析領域的佼佼者


在2019年,我們看到了數據可視化/商業智能軟件領域的整合,Salesforce收購Tableau Software,Google收購Looker。這項對商業智能工具的投資證明了公司在數據民主化方面的價值,并使用戶能夠更輕松地查看和分析其數據。


我們可以期望在2020年看到的是繼續向自動化數據分析/數據科學任務轉變。數據科學家和工程師需要能夠擴展和解決更多問題的工具。這種需求將導致在數據科學過程的多個階段開發自動化工具。例如,某些數據準備和清除任務是部分自動化的;但是,由于公司的獨特需求,它們很難完全自動化。自動化的其他候選者包括特征工程,模型選擇等。


AI、<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>、數據科學與<a href='/map/shenduxuexi/' style='color:#000;font-size:inherit;'>深度學習</a>研究在2020年的發展趨勢(二)


Ronald van Loon :廣告總監,幫助數據驅動型公司取得成功;Top10大數據,數據科學,物聯網,人工智能影響者


2019年,該行業見證了可解釋性人工智能和增強型分析技術的日益普及,使企業能夠彌合AI巨大的潛力與基于無偏AI結果的決策技術復雜性之間的差距。全棧AI方法是2019年進行的又一項發展,旨在幫助加快創新之路并支持AI增長,同時改善不同團隊和個人之間的集成和溝通。


到2020年,由于會話式AI的易用性和直觀的界面,我們將看到一些客戶體驗改善趨勢。這種自動化解決方案使公司能夠擴展和改變客戶體驗,同時為客戶提供24/7全天候服務,并為快速解決問題和提供可靠的自助服務提供了機會。此外,當我們將AI融入現有流程并努力改變我們對AI提出的問題時,Narrow Intelligence將繼續支持我們如何最有效地利用人和機器的力量。


Favio Vazquez :Closter首席執行官


在2019年,我們看到了人工智能技術的驚人發展,主要是在深度學習方面。數據科學能夠利用這些進步來解決更棘手的問題,并塑造我們所生活的世界。數據科學是利用科學來催化變化并將紙張轉化為產品的引擎。我們的領域不再只是“炒作”,它正在成為一個嚴肅的領域。我們將看到有關數據科學及其相關知識的網絡教育資源越來越多。希望我們對自己的工作方式和方法更加自信。語義技術,決策智能和知識數據科學將在未來幾年成為我們的伴侶,因此我建議人們開始探索圖形數據庫,本體和知識表示系統。


Jen Underwood :自然力量推動組織更快地前進


在2019年,我們達到了組織在算法經濟中競爭的轉折點。市場領先的公司不是發起一個一次性項目,而是通過計劃整個企業范圍的AI策略來提升數據科學的知名度。 同時,成熟的數據科學組織啟動了道德,治理和ML Ops計劃。 不幸的是,盡管機器學習的采用率提高了成功率,但大多數人還沒有。


從技術角度來看,我們目睹了混合分布式計算和無服務器架構的興起。同時,算法,框架和Auto-ML解決方案從創新迅速發展到商品化。


到2020年,我預計個人數據安全性,法規,算法偏見和深度虛假主題將成為頭條新聞。從更明亮的角度來看,可解釋的AI的進步以及自然語言生成和優化技術的增強了人們的理解,將有助于彌合數據科學與業務之間的鴻溝。隨著數據素養和公民數據科學計劃的進一步興起,機器學習從業人員應繼續蓬勃發展。


以下是根據他們的預言而得出的相應的詞云圖:


AI、<a href='/map/jiqixuexi/' style='color:#000;font-size:inherit;'>機器學習</a>、數據科學與<a href='/map/shenduxuexi/' style='color:#000;font-size:inherit;'>深度學習</a>研究在2020年的發展趨勢(二)


數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢