
本篇文章主要介紹了pandas中對series和dataframe對象進行連接的方法:pd.append()和pd.concat(),文中通過示例代碼對這兩種方法進行了詳細的介紹,希望能對各位python小白的學習有所幫助。
描述:append方法用以在表尾中添加新的行,并返回追加后的數據對象,若追加的行中存在原數據沒有的列,會新增一列,并用nan填充;若追加的行數據中缺少原數據某列,同樣以nan填充
語法:df.append(other, ignore_index=False, verify_integrity=False, sort=None)
參數說明:
下面對append方法的每個參數進行詳細介紹:
第一個參數為other:要追加的數據,可以是dataframe,series,字典,列表甚至是元素;但前后類型要一致。
# 將數據追加到series <<< a=df.iloc[0,:] <<< b=df.iloc[6,:] <<< a.append(b) #需賦給新值,不改變原數組 A 0 B 1 C 2 D 3 E 4 F 5 A 36 B 37 C 38 D 39 E 40 F 41 dtype: int32 <<< a A 0 B 1 C 2 D 3 E 4 F 5 Name: S1, dtype: int32 <<< c=a.append(b) # 保存為c <<< c A 0 B 1 C 2 D 3 E 4 F 5 A 36 B 37 C 38 D 39 E 40 F 41 dtype: int32
# 將數據追加到dataframe <<< a=df.iloc[0:2,:] <<< b=df.iloc[4:6,:] <<< c=a.append(b) # 注意是縱向追加,不支持橫向追加 <<< c A B C D E F S1 0 1 2 3 4 5 S2 6 7 8 9 10 11 S5 24 25 26 27 28 29 S6 30 31 32 33 34 35
注意:獲取單行得到的結果是一維數組,當一維數組[6,:]和二維數組[2,6]追加時,會得到8*7的數組,匹配不上的地方用NA填充。
# 將二維數組追加到一維數組 <<< a=df.iloc[0,:] <<< b=df.iloc[4:6,:] <<< c=a.append(b) <<< c 0 A B C D E F A 0.0 NaN NaN NaN NaN NaN NaN B 1.0 NaN NaN NaN NaN NaN NaN C 2.0 NaN NaN NaN NaN NaN NaN D 3.0 NaN NaN NaN NaN NaN NaN E 4.0 NaN NaN NaN NaN NaN NaN F 5.0 NaN NaN NaN NaN NaN NaN S5 NaN 24.0 25.0 26.0 27.0 28.0 29.0 S6 NaN 30.0 31.0 32.0 33.0 34.0 35.0
# 列表追加到列表 <<< a=[] <<< b=df.iloc[6,:].tolist() <<< a.append(b) <<< a [[36, 37, 38, 39, 40, 41]] # 序列追加到列表 <<< a=[1,2,3,4,5,6,7] <<< b=df.iloc[6,:] <<< a.append(b) <<< a [1, 2, 3, 4, 5, 6, 7, A 36 B 37 C 38 D 39 E 40 F 41 Name: S7, dtype: int32]
<<< df1=pd.DataFrame() <<< a={'A':1,'B':2} <<< df1=df1.append(a,ignore_index=True) <<< df1 A B 0 1 2
append方法也可以將單個元素追加到列表(其他對象不行),會自動將單個元素轉為列表對象,再進行追加操作
# 單個元素進行追加 <<< a=[1,2,3,4,5,6,7,8] <<< a.append(9) <<< a [1, 2, 3, 4, 5, 6, 7, 8, 9]
<<< df1=pd.DataFrame() <<< ser=pd.Series({"x":1,"y":2},name="a") <<< df1=df1.append(ser) <<< df1 x y a 1 2
如果不添加name,也可以添加參數ignore_index:
<<< df1=pd.DataFrame() <<< ser=pd.Series({"x":1,"y":2}) <<< df1=df1.append(ser,ignore_index=True) <<< df1 x y a 1 2
第二個參數:兩個表的index是否有實際含義,默認ignore_index=False,若為True,表根據列名對齊合并,生成新的index。
<<< a=df.iloc[0:2,:] <<< b=df.iloc[4:6,:] <<< a.append(b,ignore_index=True) A B C D E F 0 0 1 2 3 4 5 1 6 7 8 9 10 11 2 24 25 26 27 28 29 3 30 31 32 33 34 35 <<< a=df.iloc[0:2,:] <<< b=df.iloc[4:6,:] <<< a.append(b) A B C D E F S1 0 1 2 3 4 5 S2 6 7 8 9 10 11 S5 24 25 26 27 28 29 S6 30 31 32 33 34 35
在dataframe中,使用append方法進行表合并時,二者匹配不上的地方用NAN填充。
<<< df1=df.copy() <<< df2=pd.DataFrame(np.arange(8).reshape(2,4),columns=<<<['s1','s2','s3','s4']) <<< df_new=df1.append(df2,ignore_index=True) <<< df_new A B C D E F S1 S2 s3 s4 0 0 1 2 3 4 5 NaN NaN NaN NaN 1 6 7 8 9 10 11 NaN NaN NaN NaN 2 12 13 14 15 16 17 NaN NaN NaN NaN 3 18 19 20 21 22 23 NaN NaN NaN NaN 4 24 25 26 27 28 29 NaN NaN NaN NaN 5 30 31 32 33 34 35 NaN NaN NaN NaN 6 36 37 38 39 40 41 NaN NaN NaN NaN 7 NaN NaN NaN NaN NaN NaN 0 1 2 3 8 NaN NaN NaN NaN NaN NaN 4 5 6 7
第三個參數為verify_integrity:默認為False 參數用于檢查結果對象新連接軸上的索引是否有重復項,有的話引發 ValueError,可以看到這個參數的作用與ignore_index 是互斥的。 (如果 ignore_index = True ,則意味著index不能是重復的,而ignore_index = False ,則意味著index可以是重復的)
<<< df1=df.copy() <<< df2=pd.DataFrame(np.arange(8).reshape(2,4),columns= <<< ['G','H','I','J'],index=['S1','S8'],dtype=int) <<< pd.set_option('precision',0) <<< df_new=df1.append(df2,verify_integrity=False) <<< df_new A B C D E F G H I J S1 0 1 2 3 4 5 NaN NaN NaN NaN S2 6 7 8 9 10 11 NaN NaN NaN NaN S3 12 13 14 15 16 17 NaN NaN NaN NaN S4 18 19 20 21 22 23 NaN NaN NaN NaN S5 24 25 26 27 28 29 NaN NaN NaN NaN S6 30 31 32 33 34 35 NaN NaN NaN NaN S7 36 37 38 39 40 41 NaN NaN NaN NaN S1 NaN NaN NaN NaN NaN NaN 0 1 2 3 S8 NaN NaN NaN NaN NaN NaN 4 5 6 7
注意:當需要連接的兩個表的index有重復值時,設置ignore_index = True則會報錯。
第四個參數為sort:默認是False,該屬性在pandas的0.23.0版本才有,若為True,則對兩個表沒匹配上的列名,進行排序,若為False,不排序。
<<< df1=pd.DataFrame(np.arange(8).reshape(2,4),columns= <<< ['A1','B1','C1','D1'],index=['S1','S2']) <<< df2=pd.DataFrame(np.arange(8).reshape(2,4),columns= <<< ['A2','B2','C2','D2'],index=['S1','S3']) <<< pd.set_option('precision',0) <<< df_new=df1.append(df2,sort=True) <<< df_new A1 A2 B1 B2 C1 C2 D1 D2 S1 0 NaN 1 NaN 2 NaN 3 NaN S2 4 NaN 5 NaN 6 NaN 7 NaN S1 NaN 0 NaN 1 NaN 2 NaN 3 S3 NaN 4 NaN 5 NaN 6 NaN 7
描述:concat方法用以將兩個或多個pandas對象根據軸(橫向/縱向)進行拼接,concat函數是在pandas命名空間下的方法,因此需要通過pd.concat()的方式來引用。
語法:pd.concat(‘objs’, ‘axis=0’, “join=‘outer’”, ‘join_axes=None’, ‘ignore_index=False’, ‘keys=None’, ‘levels=None’, ‘names=None’, ‘verify_integrity=False’, ‘sort=None’, ‘copy=True’)
常用參數:
下面,將對concat方法以上各個參數進行詳細說明:
第一個要學習的參數為objs:要進行拼接的pandas對象,可用中括號[]將兩個或多個對象括起來。
1)對series進行拼接
<<< ser1=pd.Series(np.arange(9)) <<< ser2=pd.Series(np.arange(9)) # 對兩個series對象進行拼接 <<< pd.concat([ser1,ser2]) 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 dtype: int32
<<< df1=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['A','B','C'],index=['a','b','c']) <<< df2=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['D','E','F'],index=['e','f','g']) # 對兩個DataFrame對象進行拼接 <<< pd.concat([df1,df2]) A B C D E F a 0 1 2 NaN NaN NaN b 3 4 5 NaN NaN NaN c 6 7 8 NaN NaN NaN e NaN NaN NaN 0 1 2 f NaN NaN NaN 3 4 5 g NaN NaN NaN 6 7 8
第二個要學習的參數為axis:指定對象按照那個軸進行拼接,默認為0(縱向拼接),1為橫向橫向拼接。
<<< df1=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['A','B','C'],index=['a','b','c']) <<< df2=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['D','E','F'],index=['a','b','d']) # 將數據對象df1和df2沿1軸進行拼接,即進行橫向拼接 <<< pd.concat([df1,df2],axis=1) A B C D E F a 0 1 2 0 1 2 b 3 4 5 3 4 5 c 6 7 8 NaN NaN NaN d NaN NaN NaN 6 7 8
注意:當對Series進行拼接時,設置axis=0進行縱向拼接的結果對象為Series,設置axis=1進行橫向拼接的結果對象為DataFrame。
<<< ser1=pd.Series(np.arange(9)) <<< ser2=pd.Series(np.arange(9)) # 對Series進行拼接縱向拼接,結果認為Series對象 <<< a=pd.concat([ser1,ser2],axis=0) <<< type(a) pandas.core.series.Series # 對Series進行拼接橫向拼接,結果轉換為DataFrame對象 <<< b=pd.concat([ser1,ser2],axis=1) <<< type(b) pandas.core.frame.DataFrame
第三個要學習的參數為join:拼接的方式,inner為交集,outer為并集,橫向拼接時由index的交/并集決定,縱向拼接時由columns的交/并集決定,同時,如果join=outer,匹配不上的地方以nan填充。
<<< df1=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['A','B','C'],index=['a','b','c']) <<< df2=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['D','E','F'],index=['a','b','d']) # 將df1和df2進行橫向合并,取二者的并集 <<< pd.concat([df1,df2],axis=1) A B C D E F a 0 1 2 0 1 2 b 3 4 5 3 4 5 c 6 7 8 NaN NaN NaN d NaN NaN NaN 6 7 8 # 將df1和df2進行橫向合并,只取二者的交集 <<< pd.concat([df1,df2],axis=1,join='inner') A B C D E F a 0 1 2 0 1 2 b 3 4 5 3 4 5
第四個要學習的參數為join_axes:以哪個數據對象的index/columns作為軸進行拼接,當進行橫向拼接時,join_axes為index的列表,如需根據df1對齊數據,則會保留df1的index,再將df2的數據進行拼接;同理,縱向拼接時為columns的列表。
<<< df1=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['A','B','C'],index=['a','b','c']) <<< df2=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['D','E','F'],index=['a','b','d']) # 根據df1的index對齊數據 <<< pd.concat([df1,df2],axis=1,join_axes=[df1.index]) A B C D E F a 0 1 2 0 1 2 b 3 4 5 3 4 5 c 6 7 8 NaN NaN NaN # 根據df2的index對齊數據 <<< pd.concat([df1,df2],axis=1,join_axes=[df2.index]) A B C D E F a 0 1 2 0 1 2 b 3 4 5 3 4 5 d NaN NaN NaN 6 7 8
第五個要學習的參數為ignore_index:默認為False,如果設置為true,則無視表原來的軸標簽,直接合并,合并后生成新的軸標簽。
這里需要注意的是,與append方法只能進行縱向拼接不同,concat方法既可以進行橫向拼接,也可以進行縱向拼接,若設置ignore_index=True,當進行橫向拼接時,則無視原表的columns,直接合并,合并后生成默認的columns;同理,當進行縱向拼接時,則是忽略原表的index,生成新的index。
<<< df1=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['A','B','C'],index=['a','b','c']) <<< df2=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['D','E','F'],index=['a','b','d']) # 橫向拼接時,忽略的是columns,index仍起作用 <<< pd.concat([df1,df2],axis=1,ignore_index=True) 0 1 2 3 4 5 a 0 1 2 0 1 2 b 3 4 5 3 4 5 c 6 7 8 NaN NaN NaN d NaN NaN NaN 6 7 8 # 縱向拼接時,忽略的是index,columns仍起作用 pd.concat([df1,df2],axis=0,ignore_index=True) 0 1 2 3 4 5 a 0 1 2 0 1 2 b 3 4 5 3 4 5 c 6 7 8 NaN NaN NaN d NaN NaN NaN 6 7 8
第六個要學習的參數為keys:表標識的列表,用來區分合并后的數據來源于哪個表,當ignore_index=True時,此參數的作用失效。
<<< df1=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['A','B','C'],index=['a','b','c']) <<< df2=pd.DataFrame(np.arange(9).reshape(3,3),columns= <<< ['D','E','F'],index=['a','b','d']) # 設置ignore_index=True時,參數keys不起作用 <<< pd.concat([df1,df2],axis=1,ignore_index=True,keys= <<< ['df1','df2']) 0 1 2 3 4 5 a 0 1 2 0 1 2 b 3 4 5 3 4 5 c 6 7 8 NaN NaN NaN d NaN NaN NaN 6 7 8 # 設置ignore_index=False,會根據keys的列表標識結果中的數據來源 <<< pd.concat([df1,df2],axis=1,ignore_index=False,keys= <<< ['df1','df2']) df1 df2 A B C D E F a 0 1 2 0 1 2 b 3 4 5 3 4 5 c 6 7 8 NaN NaN NaN d NaN NaN NaN 6 7 8
總結:
如對append和concat方法還感興趣,建議可前往查看官方文檔:
1)https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.append.html?highlight=append#pandas.DataFrame.append
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25