
統計之 - 方差分析(ANOVA)_數據分析師
方差分析(Analysisof Variance,簡稱ANOVA),又稱“變異數分析”或“F檢驗”,是R.A.Fisher發明的,用于兩個及兩個以上樣本均數差別的顯著性檢驗。由于各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。
方差分析是用于兩個及兩個以上樣本均數差別的顯著性檢驗。由于各種因素的影響,研究所得的數據呈現波動狀,造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。
方差分析是從觀測變量的方差入手,研究諸多控制變量中哪些變量是對觀測變量有顯著影響的變量。
方差分析的基本原理是認為不同處理組的均數間的差別基本來源有兩個:
隨機誤差,如測量誤差造成的差異或個體間的差異,稱為組內差異,用變量在各組的均值與該組內變量值之偏差平方和的總和表示,記作SSw。組內自由度記為dfw,其概念稍后會說到。
實驗條件,即不同的處理造成的差異,稱為組間差異。用變量在各組的均值與總均值之偏差平方和表示,記作SSb。組間自由度記做dfb,其概念稍后會說到。
總偏差平方和SSt = SSb + SSw。
組內SSw、組間SSb除以各自的自由度(組內dfw=n-m,組間dfb=m-1,其中n為樣本總數,m為組數),得到其均方MSw和MSb,一種情況是處理沒有作用,即各組樣本均來自同一總體,MSb/MSw≈1。另一種情況是處理確實有作用,組間均方是由于誤差與不同處理共同導致的結果,即各樣本來自不同總體。那么,MSb>>MSw(遠遠大于)。
MSb/MSw比值構成F分布。用F值與其臨界值比較,推斷各樣本是否來自相同的總體。
方差分析的基本思想是:通過分析研究不同來源的變異對總變異的貢獻大小,從而確定可控因素對研究結果影響力的大小。
舉例分析:
下面我們用一個簡單的例子來說明方差分析的基本思想:
如某克山病區測得11例克山病患者和13名健康人的血磷值(mmol/L)如下:
患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
問該地克山病患者與健康人的血磷值是否不同?從以上資料可以看出,24個個體中患者與健康人的血磷值各不相同,如果用離均差平方和(SS)描述其圍繞總均值的變異情況,則總變異有以下兩個來源:
組內變異,即該24個個體來自同一總體,但由于隨機誤差的原因使得各組內部的血磷值各不相等;
組間變異,即該24個個體來自兩個不同的總體-即健康人跟患者的血磷脂從本質上是有差別的,它們是兩個不同的總體。
而且:SS總=SS組間+SS組內 v總=v組間+v組內
如果用均方(離差平方和除以自由度)代替離差平方和以消除各組樣本數不同的影響,則方差分析就是用組間均方去除組內均方的商(即F值)與1相比較,若F值接近1,則說明各組均值間的差異沒有統計學意義,若F值遠大于1,則說明各組均值間的差異有統計學意義。實際應用中檢驗假設成立條件下F值大于特定值的概率可通過查閱F界值表(方差分析用)獲得。
利用統計軟件分析結果如下:
data a;
input type num@@;
cards;
1 0.84 1 1.05 11.20 1 1.20 1 1.39 1 1.53 1 1.67 1 1.80 1 1.87 1 2.07 1 2.11
2 0.54 2 0.64 20.64 2 0.75 2 0.76 2 0.81 2 1.16 2 1.20 2 1.34 2 1.35 2 1.48 2 1.56 2 1.87
;
run;
proc anova;
class type;
model num=type;
means type;
run;
方差分析主要用途:①均數差別的顯著性檢驗,②分離各有關因素并估計其對總變異的作用,③分析因素間的交互作用,④方差齊性檢驗。
在科學實驗中常常要探討不同實驗條件或處理方法對實驗結果的影響。通常是比較不同實驗條件下樣本均值間的差異。例如醫學界研究幾種藥物對某種疾病的療效;農業研究土壤、肥料、日照時間等因素對某種農作物產量的影響;不同化學藥劑對作物害蟲的殺蟲效果等,都可以使用方差分析方法去解決。
一個復雜的事物,其中往往有許多因素互相制約又互相依存。方差分析的目的是通過數據分析找出對該事物有顯著影響的因素,各因素之間的交互作用,以及顯著影響因素的最佳水平等。方差分析是在可比較的數組中,把數據間的總的“變差”按各指定的變差來源進行分解的一種技術。對變差的度量,采用離差平方和。方差分析方法就是從總離差平方和分解出可追溯到指定來源的部分離差平方和,這是一個很重要的思想。
經過方差分析若拒絕了檢驗假設,只能說明多個樣本總體均值不相等或不全相等。若要得到各組均值間更詳細的信息,應在方差分析的基礎上進行多個樣本均值的兩兩比較。
多個樣本均值間兩兩比較
多個樣本均值間兩兩比較常用q檢驗的方法,即Newman-keuls法,其基本步驟為:建立檢驗假設-->樣本均值排序-->計算q值-->查q界值表判斷結果。
多個實驗組與一個對照組均值間兩兩比較
多個實驗組與一個對照組均值間兩兩比較,若目的是減小第II類錯誤,最好選用最小顯著差法(LSD法);若目的是減小第I類錯誤,最好選用新復極差法,前者查t界值表,后者查q'界值表。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25