熱線電話:13121318867

登錄
首頁精彩閱讀統計之 - 方差分析(ANOVA)_數據分析師
統計之 - 方差分析(ANOVA)_數據分析師
2014-12-24
收藏

統計之 - 方差分析(ANOVA)_數據分析師

方差分析(Analysisof Variance,簡稱ANOVA),又稱“變異數分析”或“F檢驗”,是R.A.Fisher發明的,用于兩個及兩個以上樣本均數差別的顯著性檢驗。由于各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。

簡介

方差分析是用于兩個及兩個以上樣本均數差別的顯著性檢驗。由于各種因素的影響,研究所得的數據呈現波動狀,造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。

方差分析是從觀測變量的方差入手,研究諸多控制變量中哪些變量是對觀測變量有顯著影響的變量。

原理

方差分析的基本原理是認為不同處理組的均數間的差別基本來源有兩個:

隨機誤差,如測量誤差造成的差異或個體間的差異,稱為組內差異,用變量在各組的均值與該組內變量值之偏差平方和的總和表示,記作SSw。組內自由度記為dfw,其概念稍后會說到。

實驗條件,即不同的處理造成的差異,稱為組間差異。用變量在各組的均值與總均值之偏差平方和表示,記作SSb。組間自由度記做dfb,其概念稍后會說到。


偏差平方和SSt = SSb + SSw。

組內SSw、組間SSb除以各自的自由度(組內dfw=n-m,組間dfb=m-1,其中n為樣本總數,m為組數),得到其均方MSw和MSb,一種情況是處理沒有作用,即各組樣本均來自同一總體,MSb/MSw≈1。另一種情況是處理確實有作用,組間均方是由于誤差與不同處理共同導致的結果,即各樣本來自不同總體。那么,MSb>>MSw(遠遠大于)。

MSb/MSw比值構成F分布。用F值與其臨界值比較,推斷各樣本是否來自相同的總體。

基本思想

方差分析的基本思想是:通過分析研究不同來源的變異對總變異的貢獻大小,從而確定可控因素對研究結果影響力的大小。

舉例分析:

下面我們用一個簡單的例子來說明方差分析的基本思想:

如某克山病區測得11例克山病患者和13名健康人的血磷值(mmol/L)如下:

患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11

健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87

問該地克山病患者與健康人的血磷值是否不同?從以上資料可以看出,24個個體中患者與健康人的血磷值各不相同,如果用離均差平方和(SS)描述其圍繞總均值的變異情況,則總變異有以下兩個來源:

組內變異,即該24個個體來自同一總體,但由于隨機誤差的原因使得各組內部的血磷值各不相等;

組間變異,即該24個個體來自兩個不同的總體-即健康人跟患者的血磷脂從本質上是有差別的,它們是兩個不同的總體。

而且:SS總=SS組間+SS組內 v總=v組間+v組內

如果用均方(離差平方和除以自由度)代替離差平方和以消除各組樣本數不同的影響,則方差分析就是用組間均方去除組內均方的商(即F值)與1相比較,若F值接近1,則說明各組均值間的差異沒有統計學意義,若F值遠大于1,則說明各組均值間的差異有統計學意義。實際應用中檢驗假設成立條件下F值大于特定值的概率可通過查閱F界值表(方差分析用)獲得。

利用統計軟件分析結果如下:

data a;

input type num@@;

cards;

1 0.84 1 1.05 11.20 1 1.20 1 1.39 1 1.53 1 1.67 1 1.80 1 1.87 1 2.07 1 2.11

2 0.54 2 0.64 20.64 2 0.75 2 0.76 2 0.81 2 1.16 2 1.20 2 1.34 2 1.35 2 1.48 2 1.56 2 1.87

;

run;

proc anova;

class type;

model num=type;

means type;

run;

wKiom1RHYmHijJ_-AACwOVwdRkM797.jpg

應用

方差分析主要用途:①均數差別的顯著性檢驗,②分離各有關因素并估計其對總變異的作用,③分析因素間的交互作用,④方差齊性檢驗。

在科學實驗中常常要探討不同實驗條件或處理方法對實驗結果的影響。通常是比較不同實驗條件下樣本均值間的差異。例如醫學界研究幾種藥物對某種疾病的療效;農業研究土壤、肥料、日照時間等因素對某種農作物產量的影響;不同化學藥劑對作物害蟲的殺蟲效果等,都可以使用方差分析方法去解決。

一個復雜的事物,其中往往有許多因素互相制約又互相依存。方差分析的目的是通過數據分析找出對該事物有顯著影響的因素,各因素之間的交互作用,以及顯著影響因素的最佳水平等。方差分析是在可比較的數組中,把數據間的總的“變差”按各指定的變差來源進行分解的一種技術。對變差的度量,采用離差平方和。方差分析方法就是從總離差平方和分解出可追溯到指定來源的部分離差平方和,這是一個很重要的思想。

經過方差分析若拒絕了檢驗假設,只能說明多個樣本總體均值不相等或不全相等。若要得到各組均值間更詳細的信息,應在方差分析的基礎上進行多個樣本均值的兩兩比較。

多個樣本均值間兩兩比較


多個樣本均值間兩兩比較常用q檢驗的方法,即Newman-keuls法,其基本步驟為:建立檢驗假設-->樣本均值排序-->計算q值-->查q界值表判斷結果。

多個實驗組與一個對照組均值間兩兩比較

多個實驗組與一個對照組均值間兩兩比較,若目的是減小第II類錯誤,最好選用最小顯著差法(LSD法);若目的是減小第I類錯誤,最好選用新復極差法,前者查t界值表,后者查q'界值表。

數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢