熱線電話:13121318867

登錄
首頁精彩閱讀數據分析之獨立樣本的T-Test分析_數據分析師
數據分析之獨立樣本的T-Test分析_數據分析師
2014-11-04
收藏

數據分析之獨立樣本的T-Test分析

比較兩個獨立樣本數據之間是否有顯著性差異,將實驗數據與標準數據對比,查看

實驗結果是否符合預期。T-Test在生物數據分析,實驗數據效果驗證中很常見的數

據處理方法。- T-table查找表

獨立樣本T-test條件:

1.      每個樣本相互獨立沒有影響

2.      樣本大致符合正態分布曲線

3.      具有同方差異性

單側檢驗(one-tail Test)與雙側檢驗(Two-Tail Test)

20140420223257859

基本步驟:

1.雙側檢驗, 條件聲明  alpha值設置為0.05

根據t-table, alpha = 0.05, df = 38時, 對于t-table的值為2.0244

20140420223336734

2. 計算自由度(Degree of Freedom)

Df = (樣本1的總數 + 樣本2的總數)- 2

3. 聲明決策規則

如果計算出來的結果t-value的結果大于2.0244或者小于-2.0244則拒絕

4. 計算T-test統計值

20140420223400687

5. 得出結論

如果計算結果在雙側區間之內,說明兩組樣本之間沒有顯著差異。

可重復樣本的T-Test計算

同樣一組數據在不同的條件下得到結果進行比對,發現是否有顯著性差異,最常見

的對一個人在飲酒與不飲酒條件下駕駛車輛測試,很容易得出酒精對駕駛員有顯著

影響

算法實現:

對獨立樣本的T-Test計算最重要的是計算各自的方差與自由度df1與df2

20140420223438750

對可重復樣本的對比t-test計算

20140420223457937

程序實現:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
package com.gloomyfish.data.mining.analysis;
         
public class TTestAnalysisAlg {
         
    private double alpahValue = 0.05; // default
    private boolean dependency = false; // default
         
    public TTestAnalysisAlg() {
        System.out.println("t-test algorithm");
    }
         
    public double getAlpahValue() {
        return alpahValue;
    }
         
    public void setAlpahValue(double alpahValue) {
        this.alpahValue = alpahValue;
    }
         
    public boolean isDependency() {
        return dependency;
    }
         
    public void setDependency(boolean dependency) {
        this.dependency = dependency;
    }
         
    public double analysis(double[] data1, double[] data2) {
        double tValue = 0;
        if (dependency) {
            // Repeated Measures T-test.
            // Uses the same sample of subjects measured on two different
            // occasions
            double diffSum = 0.0;
            double diffMean = 0.0;
            int size = Math.min(data1.length, data2.length);
            double[] diff = new double[size];
            for(int i=0; i
            {
                diff[i] = data2[i] -data1[i];
                diffSum += data2[i] -data1[i];
            }
            diffMean = diffSum / size;
            diffSum = 0.0;
            for(int i=0; i
            {
                diffSum += Math.pow((diff[i] -diffMean), 2);
            }
            double diffSD = Math.sqrt(diffSum / (size - 1.0));
            double diffSE = diffSD / Math.sqrt(size);
            tValue = diffMean / diffSE;
         
        } else {
         
            double means1 = 0;
            double means2 = 0;
            double sum1 = 0;
            double sum2 = 0;
         
            // calcuate means
            for (int i = 0; i < data1.length; i++) {
                sum1 += data1[i];
            }
         
            for (int i = 0; i < data2.length; i++) {
                sum2 += data2[i];
            }
         
            means1 = sum1 / data1.length;
            means2 = sum2 / data2.length;
         
            // calculate SD (Standard Deviation)
            sum1 = 0.0;
            sum2 = 0.0;
         
            for (int i = 0; i < data1.length; i++) {
                sum1 += Math.pow((means1 - data1[i]), 2);
            }
         
            for (int i = 0; i < data2.length; i++) {
                sum2 += Math.pow((means2 - data2[i]), 2);
            }
         
            double sd1 = Math.sqrt(sum1 / (data1.length - 1.0));
            double sd2 = Math.sqrt(sum2 / (data2.length - 1.0));
         
            // calculate SE (Standard Error)
            double se1 = sd1 / Math.sqrt(data1.length);
            double se2 = sd2 / Math.sqrt(data2.length);
            System.out.println("Data Sample one - > Means :" + means1
                    + " SD : " + sd1 + " SE : " + se1);
            System.out.println("Data Sample two - > Means :" + means2
                    + " SD : " + sd2 + " SE : " + se2);
         

數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢