
作者:俊欣
來源:關于數據分析與可視化
今天和大家來分享一些數據可視化方向的干貨,我們來嘗試用Python來繪制一下“漏斗圖”,但愿大家在看完本篇文章之后會有所收獲。
漏斗圖常用于用戶行為的轉化率分析,例如通過漏斗圖來分析用戶購買流程中各個環節的轉化率。當然在整個分析過程當中,我們會把流程優化前后的漏斗圖放在一起,進行比較分析,得出相關的結論,今天小編就用“matplotlib”、“plotly”以及“pyecharts”這幾個模塊來為大家演示一下怎么畫出好看的漏斗圖
首先我們先要導入需要用到的模塊以及數據,
import matplotlib.pyplot as plt import pandas as pd
df = pd.DataFrame({"環節": ["環節一", "環節二", "環節三", "環節四", "環節五"], "人數": [1000, 600, 400, 250, 100], "總體轉化率": [1.00, 0.60, 0.40, 0.25, 0.1]})
需要用到的數據如下圖所示
用matplotlib來制作漏斗圖,制作出來的效果可能會稍顯簡單與粗糙,制作的原理也比較簡單,先繪制出水平方向的直方圖,然后利用plot.barh()當中的“left”參數將直方圖向左移,便能出來類似于漏斗圖的模樣
y = [5,4,3,2,1] x = [85,75,58,43,23] x_max = 100 x_min = 0 for idx, val in enumerate(x): plt.barh(y[idx], x[idx], left = idx+5) plt.xlim(x_min, x_max)
而要繪制出我們想要的想要的漏斗圖的模樣,代碼示例如下
from matplotlib import font_manager as fm # funnel chart y = [5,4,3,2,1]
labels = df["環節"].tolist()
x = df["人數"].tolist()
x_range = 100
font = fm.FontProperties(fname="KAITI.ttf")
fig, ax = plt.subplots(1, figsize=(12,6)) for idx, val in enumerate(x):
left = (x_range - val)/2 plt.barh(y[idx], x[idx], left = left, color='#808B96', height=.8, edgecolor='black') # label plt.text(50, y[idx]+0.1, labels[idx], ha='center',
fontproperties=font, fontsize=16, color='#2A2A2A') # value plt.text(50, y[idx]-0.3, x[idx], ha='center',
fontproperties=font, fontsize=16, color='#2A2A2A') if idx != len(x)-1:
next_left = (x_range - x[idx+1])/2 shadow_x = [left, next_left, 100-next_left, 100-left, left]
shadow_y = [y[idx]-0.4, y[idx+1]+0.4,
y[idx+1]+0.4, y[idx]-0.4, y[idx]-0.4]
plt.plot(shadow_x, shadow_y)
plt.xlim(x_min, x_max)
plt.axis('off')
plt.title('每個環節的流失率', fontproperties=font, loc='center', fontsize=24, color='#2A2A2A')
plt.show()
繪制出來的漏斗圖如下圖所示
當然我們用plotly來繪制的話則會更加的簡單一些,代碼示例如下
import plotly.express as px data = dict(values=[80,73,58,42,23],
labels=['環節一', '環節二', '環節三', '環節四', '環節五'])
fig = px.funnel(data, y='labels', x='values')
fig.show()
最后我們用pyecharts模塊來繪制一下,當中有專門用來繪制“漏斗圖”的方法,我們只需要調用即可
from pyecharts.charts import Funnel
from pyecharts import options as opts
from pyecharts.globals import ThemeType c = ( Funnel(init_opts=opts.InitOpts(width="900px", height="600px",theme = ThemeType.INFOGRAPHIC ))
.add( "環節",
df[["環節","總體轉化率"]].values,
sort_="descending",
label_opts=opts.LabelOpts(position="inside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts漏斗圖", pos_bottom = "90%", pos_left = "center"))
) c.render_notebook()
我們將數據標注上去之后
c = (
Funnel(init_opts=opts.InitOpts(width="900px", height="600px",theme = ThemeType.INFOGRAPHIC ))
.add( "商品",
df[["環節","總體轉化率"]].values,
sort_="descending",
label_opts=opts.LabelOpts(position="inside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts漏斗圖", pos_bottom = "90%", pos_left = "center"))
.set_series_opts(label_opts=opts.LabelOpts(formatter=":{c}"))
)
c.render_notebook()
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25在當今數字化時代,數據分析師的重要性與日俱增。但許多人在踏上這條職業道路時,往往充滿疑惑: 如何成為一名數據分析師?成為 ...
2025-04-24